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NATIONAL ADVISORY COMMITTEE FCOR AERONAUTICS

TECHNICAL NOTE NO. 1360

THE STABILITY OF THE LAMINAR BOUNDARY LAYER
IN A COMFRESSIBLE FLUID

By Lester Lees
SUMMARY

The present paper is a continuation of a theoretical investl-
gation of the stability of the laminar boumdary layer in a com- =
pressible fluld. An approximate estimate for the minlmum critical
Reynolds number Re"rmi » or stablllty limit, is obtained in berms

of the distribution of the kinematic viscosity end the product of

— . %
the mean density p¥% and mean vorticity du® across the boundary

dar
. layer. With the help of this estimate for Rp , 1t is shown
Cl‘min ’
that withdrewing heat from the fluld through the sclid swrface
increases Recrmi and stabllizes the flow, as compared with the
n )
flow over an insulated surface at the same Mach number. Conductlion
of heat 4o the fluld through the solid surface has exyactly the
opposite effect. The wvalue of Recrmin for the insulated surface

decreases as the Mach number increases for the case of a wniform
free-stream veloclity., These goneral conclusions are supplemented
by detalled calculations of the cwrves of wave number (inverse

wave length) against Reynolds number for the neutral dlsturbances
for 10 representative cases of insulated and noninsulated surfaces.

So far as leminar stabllity is concerned, an important 4if-
ference exlgts between the case of a subsmic and supersonic froe-
gtroam velocity outside the boundary laysr. Theo nsubral boundary-
" layer disturbances that are significant for laminer stability die
out exponentially with distance fram the solid surface; thorefore
tho phaso volocity c* of those dlsturbances is subsonic relative

to the free-stream velocity ug* - or 11;?{ - c*< a%, where ag*

. ) TUa¥*
is the local sonic velocity. When =—e = My < 1 (vhere M, is
a8 %

: o
free-stream Mach number), it follows that 0 < c* < ¢

*max; and eny
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laminar boundary-layer flow 1s ultimately unstable at pufficiently
high Reynolds numbers because of the destabllizing action of vis-
cogity near the solid swurface, as expla_ined.\by Prandtl for_ the

_ - 1 -
incompressible fluld. When M, > 1, however, f_—-—-__ >1 - I—-— > 0.
. : - s ug¥ %o
If the quanbtlty [—E— (533 d—'E—*) 18 large enough negatively,
ay* dy* e lipys

the rate at which energy passes from the disburbance to the mean

dy* dy*

alvays be large enough to counterbalance the rate at which energy
passed from the mean flow to the distuwrbance becauso of the desta-
bilizing action of viscosity near the solid surface. In that case
only damped disturbences exist and the leminar boundary layer 1s
(oompletely stable at all Reynolds mmbers. This condition occuws
vhen the rate at which heat is withdrawn from the fluid through
the solid surface reaches or oxceods a critical value that depends
only on the Mach number and the properties of tho gas. Calcula-
tions show that for M, > 3 (spprox.) the laminar boundary-laysr
flow for thermal equilibrium - where the heat conductlon through
the solid surface balances the heat radiated from the swurface - l1ls
campletely stable at all Reynolds numbers under free-flight conditions
\i1f the free-stream velocity 1g uniform.

a [— du¥
flow, which is proportional to -c¥ {o—— — s can
- _1;“:0*

The results of the analysis of the stabllity of the laminar
boundary layer must bo applied with care to discussions of tranel-
tion; howoever, withdrawing heat from the fluld through the solid
surface, for example, not only lncroases Recrmin but also

decreases the inltisl rate of amplification of tho self-cxclted

. disturbances, which is roughly proportional to 1 crmi < Thus,

n
tho effect of the thermal condltions at the solid surface on the
transition Reynolds number Ry i similar to the effect on Ry .

: tr _ Crpin

A comparison between this conclusion éand experimental investigations
of the effect of surface heating on transition at low spceds shows
thet the results of the present papor glve the proper direction of
this effecth. '

The extension of the rosulte of the steablllty emalysls %o
Jlaminar boundery-layer,gas flows with a pressure gradient in the
directlion of tho free stream 1s discussed.
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INTRODUCTION

: By the theoretical studies of Heisenberg, Tollmien, Schlichting,
and. Lin (references 1 to 5) and the careful experimental investi-
gations of Liepmann (reference 6) and H. L, Dryden and his asso-
_clates (reference 7), it has been definitely established that  the
flow in’'the laminar boundary layer of & viscous hamogeneoug incom-
pressible fluld is unstable above a certeln characteristic critical
Reynolds numbser. When the level of the disturbances in the free
stream 1s low, as in most cases of technical interest, thie inherent
instability of the laminar motion at sufficiently high Reynolds
numbers is responsible for the ultimate transition to turbulent
flow in the boundary layer. The steady laminar boundary-layer flow
would always represent & possible solution of the steady equatiams
of motlon, but this steady flow is in a state of unstable dynanic .
equilibriwm above the critical Reyholds number.. Self-excibed dis-
turbances (Tollmien waves) appear in the flow, and thess dlsturb-
ances grow larges enough sventually to destroy the lsminar motion.

The question naturally arises as to how the phenomena of
laminer instability and transition to burbvlent flow are modified
" vwhen the fluid velocities and temperature variations in the boundary
layer are large enough so that the compressibility and conductivity
of the fluid can no longer be neglocted. The present papsr repre-
sents the socond phese of a thecretical investigation of the sta-
bility of the laminsr boundary-layor flow of a gas, in which the
compressibllity and heat conductivity of the ges as well as its
viacosity, are taken into account. The first part of this work
was presgented in reference 8. The obJjects of this Investigation
are (1) to dotermine how the stability of the laminar boundary
layer is affected by the free-stroam Mach nmumber and the thermal
conditions at the solid boundary and (2) to obtain a better under-
standing of the physical basis for the ingtability of leminar gas
flows. In this sense, tho presont study 1s an extension of the
Tollmien-Schlichting analysis of the stability of tho laminar flow
of an incampressible fluid, but the investigation 1s also concorned
with the general question of bowndary-layer disturbances in a
comprossible fluld and thelr possible inberactions with the main
external flow.

SYMBOLS

With minor exceptions the symbols used in this paper are tho
seme as those introduced in roforecnce 8. Physical quantities are

3



NACA TN No. 1360

denoted by an asterisk, or star, wheréas the corresponding non-
dimensional quantities are unstarred. A bar over a quantlity denotes
measn value; a prime denotes a fluct,uation, the subscript o denotes
freeo~-gtream values at the "edge" of the boundary layer; the sub-
seript 1 denotes values at the solld surface, and the sub-
seript ¢  denotes values at the imner "“critical layer", where
the phase veloclty of the disturbance equals the mean flow veloclty,
The free-stream values are the characteristic measures for all non-
dimensional quantities. The characteristic length msasure is tho -
boundary-layer thickness 8, except where otherwlse indlcated.
Note that in order to-conform with standard notation, the symbol &
for boundary-layer thickness is ungtarred, vhercas the symbols ¥
“end - 6 are used for boundary-lsyer dlsplacement thickness and '
boundary-layeor momentum thickneas, respectively.

x*- distance along surface
y* distance normal to surface
t¥ time
ux camponent of velocity in x¥-direction
we 2
Bt
v component of veloclty ln y¥-dlrection '
" :
o
oF
g | ‘stream function for mean flow
o¥% density of gas
p* .preseure of gas
ity temperature of gas
T* laminar shear gtress
ul* - ordinary coe:f‘ficien’c:.of vigcogity of s ...

v kinematic viscosity of gas (;;l*/b*)

L
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thermal conductivity of gas

gpeclfic heat at congtant volums
gpeciflic heat at constant :g;ressu:re

gas constant per gram

ratio of specific heats (cp /cv) s 1.405 for air

camplex- pHase velocity of boundary-layer disturbance
wave length of boundary-layer disturbance

-

boundary-léyer thickness

boundary-layer ﬂsplacement thickneas f (r - pw)dy’)
. Jo _

boundery-layer momsntum thickness (f pw(l - w)ay*

wave number of boundary-layer disturbance (2mn/a%)
Po* ug* 8
Reynolds number
Hlo*

Mach number .

)

5
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5

o} Prandtl number (cp ===
k *
¢]

1. PRELIMINARY CONSIDERATIONS

In the first phase of this investigation (reference 8) the
gtability of the laminar boundary-layer flow of a gas 1is analyzed
by the method of small perturbations, which was already so suc-
cessfully utilized for the study of the stabllity of the laminar
flow of an incompressible fluid, (Bes reference 5.) By this
method a nonsteady gae flow is investigated in which all physical
quantities differ from their values in a glven steady gas flow
by small perturbations that are functions of the time and the space
coordinates, This nonsteady flow must satisfy tho complete gas-
dynamic equations of motion and the same boundary conditions as
the given steady flow. The question 1s whethor the nonsteady flow
demps to the steady flow, oscillates about it, or diverges from it
with time - that is, whether the small perturbations are damped,
neutral, or self-excited disturbances in time, and thus whether
the given steady gas flow is steble or unsteble., The analysis is
particularly concerned with the conditions for tho exlstence of
neutral disturbances, which mark the transition from stable to
unstable flow and define the minimum critical Reynolds number,

In order to bring out some of the principal features of the
stability problem without becoming involved in hopeless mathe-
matical complications, the solid boumdary 1s teken as two dimen~
gional and of negligible curvature and the boundary-leyer flow is
regarded as plane and essentlially perallel; that is, the veloclty
component in the direction normal to the surface 1s negligible and
the veloclty component parallel to the swrface is a function mainly
of the distance normsl to the surface. The small disturbances,
vhich are also two dimensional, are anslyzed into Fourler com-
ponents, or normal modes, periodlc in the directlon of the free
stream; and the amplitude of each one of these partial osclllatilons
is a function of the distance noxrmal t6 the solid swrface, thab

is, u*' = u * £(y) eid'(x'Ct).

- In the study of the sbabllity of the laminsr boundary layer,
it will be seen that only the local properties of the "parallel"
flow are significant., To lnclude the varlatlion of the meen veloclty
in the direction of the free stream or the velocity component normal

6



NACA TN No. 1360

to the solid boundary in the problem would lead only to higher oxder
terms in the differential equations governing the disturbances,
since both of theme ractorsg sre inversely proportional tc the local
Reynolds number based on the boundary-layer thickness. (See,.for
example, reference 2.) By e careful analysis, Pretsch has shown
that even with a pressure gradient in the direction of the free
. 8tream the local mean-velocity distribubion alone determines the
s8tability characteristics of the lccal boundary-layer flow at
- large Reynolds numbers {reference 9). Such a statement applies
only to the stability of the flqw wilithln the bowndary layer. For
the interaction between the boundery layer and a main "external®
supersonic flow, for example, 1t 1s obviously the variation in
boundary-layer thickness and mean velocity along the surface that

is significant. (Sec reference 10.) .

The aforementionsd considefations also lead quite naturally
to the study of individual partial oscillations of the

form f(y) eia(x—ct), Por which the differential equations of
disturbance do not conbain x and +t oxplicitly. Those partial
oscillations are 1deally suited for the gtudy of instebility, for
in order to show thet-a flow ig unstable it is unnecessary to
consider the most gencral possible disturbance; in fact, the
simplest will suffice. It ig only necessary to show that a
-particular disturbance satisfying the squations of motion and the
boundary conditions is self-excited or, in this case, that the]
imaginary part of the complex phase velocity ¢ is positive.

In reference 8 the differential equations governing one
"normal mode of the dlsturbances in the laminar boundary layer of
& gas were derived and studled very thoroughly. The complete setb
of solutions of the dlesturbsnce equations was obtained and the
physical boundary conditions that these solubtions satisfy were
investigated, It was found that the final relation between the
values of ¢, w, and R that determines the possible neubral
disturbances (limits of stability) is of the same Torm in the
compresgible fluld as in the incompressible fluild, to a first
approximation. . The basis Tor this result is the fact that for
Roynolds numbors of the order of those encommtered in most aero-
dynemlc problems, the temperature disturbances have only a negligible
effect on those particular velodity solutions of the disbturbance
equations that depend primarily on the viscosity (viscous solu-
tions). To a first approximation, these viscous solubions there-
fore do not depend directly on the heat conductlvity and are of
the sams form as in the incomprossible fluid, except that thoy
involve the Roynolds numbsr based on the kinomatic viscosity noar
the solid boundary (vhere the viscous forces aro important) rather
than in the froe stream. In this first approximation, the second

T
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viscosity coefficient, which 1s a measure of the dependence of the
pressure on the rate of change of density, does not affect the sta~
bility of the laminar boundary layer. From these results 1t was
inferred that at large Reynolds. nwbers the influvence of the viscous
forces on the stability ls essentlally the same as in an incom-
pressible fluid, Thig inference ls borne oul by the results of the
present paper. ' ' , .

The - influence of the inertial forces on the stability of the
laminar boundary layer is reflected in the behavior of the asymp-
totic inviscid solutiong of the disburbance squations, which are
independent of Reynolds number in first approximation. The results
obtained in referonce.8 show that the behavlior of the inertial
Torces ls dominated by the distribution of the product of tho mean

denslity and mean vorticity pq'z across the boundary layor. (Tho

gradient éf thisg quantity, or -(-1--( @_"f_) which plays the game role

dy Cay/’ ,
ag the gradient of the vorticity-in the case of an incompressible
fluld, 1s a measure of the rate at which the x-momentum of thoe :
thin layer of fluld near the critical layer {(vhere w = c)
increases, or decreases, because of the transport of momentum by
the disturbance.) In order to clarify the behavior of the inortial
forcos, the limiting case of an inviscid fluid (R—y ) is studled
in dotail in roferencs 8. ' The following gomeral criterione are

obtalned: (1) If the guantity %(p%’ vanlshes for somo value

of w>1l- I%’“" then neutral and self-exclted subsonic disturb-

L

o
ancos oxiet and the inviscid compressible flow is unstablo,
(2) If the quantity %Gg’—;) does not vanish for some value

of w>1 - b-]&f-, thon all subsonic disturbences of finite wave
0 : . - :

longth are damped and the inviscld comprossible flow ie stable. .
(Outsido the boundsry layer, the relative velocity: bebtweon the mean’
flow and the x~component of the phaso veloclity of a subsonic dis-
turbance is loss than the mean sonic velocity. Tho magnitude of
such a dizturbence dios out exponentially with dlstance from the
solid surfaco;) (3) In goneral, a disturbance gains onergy from

the mean flow if %(pg-g:) ia positive at the cri’cical layor

dy

(vhore w = ¢) eand losos energy to the moan flow if [:-y (pd-f ] <0.
W=C

8
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-

The general stabil:tty cri'berions for inviescid compressible
flow glve scme insight. info ’ghe effect of the inertial forces on
“the stability, bub the;y' cannot be taken over bodily so the real
compressible fluld. - Of course, if a flow is wnsbeble in the .
limiting case -of an infinite Reynolds number, the flow is unstable
for a certain finite rangs.of Reynolds number, - A compressible flow
thet is .stable when R-—3®, however, is not necessarlly stable
at all-finite Reynolds num"bers vhen the effect of viscoslty is
teken into aceount, One of the ob,jects of 'bhe _pa:'esent paper ‘is
‘o settle 'bhis quostion. .

On the 'basis of the sta‘bili‘by criterions o'btained. :I.n refeor-
cnce 8, some genersl statements were mede concernling the effect of
’chermal conditions at the solid boundary on the gtability ‘of laminar
bounﬂary—layer flow. It is concluded from physical reasoping and

d /[ a
a study of 'bhe equa’cions of moan motion that tho auanti'by a-y (pd—;

vanishes for some value o:E‘ w > G _f ( > - 0, ‘that id, if

heat is aé’.ded. %o the fluld tlrrough the solid. suri‘ace or if the

' sw:face 1g. :Lnsulated I:E_‘ (gl’) >0 and is suf:f‘*ciently large,
S y

. 1 . .

that- is, if heat 1is ylthdrawn from the fluld 'through the solid.

surface 4t a suffir'ient rato, the quant1+v -— ( D } nevar vanishes.

-

Thus, when (-) s ,.- the laminar 'bound.ary-layer flow is desta-
. ' B 13

'bilized 'by the action o:E' the inertial forces bu‘b stabilized.
through the increage of kinematlc viscosity near the solid surface.

When -a-: > 0,  the reverse .is trus.- The guestion of which of
X
1.
these sffects 1g predom.,nant cén be anawerefd only by further s'budy
of the stability problem in a real compressible fluid :

In the present paper this invesﬁ* gat on ie con'binued along 'bhe
following,liness .

(1) A s’oudy 18'made OF how the general crlterions for insta-
bility in an inviscid dompréssible Fluild sre modified by the -
introduction of a small viscosity (stability at .veory large
Reynolds numbers) :
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(2) The conditions for the existence of neutral disturb-
ances at large Reynolds number are examined (study of asymp- -
totic form of relation between eilgen-values of ¢, «, and R).

(3) A relatively simple expression for the approximate
value of the minimum critical Reynolds number is derived;
this expression Involves the local dletribution of mean
velocity end mean tempervature across the boundary layer. This
approximation will serve as a criterion from which the effect
of the free-stream Mach number and thermal conditions at the
solid surface on the stability of laminar boundary-leyer flow
is readily evaluated. The quostion of the relative influence

of the kinemstic viecosity end the diastribution of o% on
gtability would then be settled.

(4) The energy balance for small disturbances in the real
compresaible fluld 1s consldered in an attempt to clarify the
physical bagls for the instablility of laminar gas flows.

(5) In order to supplement the investigations outlined _
in the four preceding paragraphs, dotalled calculations are
made of the limits of stebility, or the curve of o against R
for the neutral disturbances for several representative cases
of insulated and noninsulated surfaces. The results of the
calculations are presented in figures 1 to 8 and tables I
to IV. The mothod of computation of the etability limite is
briefly outlined in reference 8, although the calculations
were not carried out in that paper.

In the -present investigation the work of Helsenberg (refer-
ence 1) and Lin (reference 5) on the stability of & real inconm- .
pressible fluid is natuyrally en indispensable guide. In favt, the
methods uvtilized in the present study are analogous to thdse
developed for an incompressible fluld.,

The present paper is concerned only with the subsonic disturb-
ances. The amplitude of the subsonic disturbance dles out repidly
with distence from the solid boundary. In other words, the neutral
subsonic d&isturbance is an "eigen-oscillation” confined mainly to
the boundary layer and exists only for discrete eigen-values of c¢, -
o, and 'R that determine the limits of etability of leminsr
boundary-layer flow. Disturbances classified in reference 8 as
neutral "supersonic," that is, disturbances such that the relative
veloelty between the x-component of the phase velocity of such a
disturbance and the free-stream veloclty is greater than the local
mean sound speed in the free stream, are actually progressive sound

- 10
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waves +that impinge obliquely on the boundery layer and are reflected
with change of amplitude. For dlsturbances of this type the wave
length and phase velocity are obviously completely arblirary (eilgen-
valuss are conbtinuous), and these disturbances have no significance
for boundary-layer stability.

When the free-stream velocity is supersonic (Mo > l), ‘the
gubsonic bowndsry-layer dilsturbances must satlsfy the requirement

— — 1
that u ¥ - o* <ag¥ or c>1 v (for My< 1, c__Z_O). Now,
- o]
by analogy with the case of an incompressible fluid 1t ls to be
expected that for values of ¢ greater than some critical value of oo

say, all subsonic dishburbances are damped. Thus, when M, > 1,
there is the pogsibility that for certain msan veloclty-temperature

distributions across the boundary layer, noubral cr self-exclited
disturbances satisfying the differential equations of motion, the

1
boundary conditions,and,also, the physical requirement that ¢ > 1- ﬁ-o

cannot be found. In that event, the leminar boumdaxry flow is stable
. at all Reynolds numbors. - This inbteresting possibility is investl-
goted in the present papex. :

2, CALCULATTION OF THE LIMITS OF SCABILICY QOF THE LAMINAR

BOUNDARY LAYER IN A VISCOUS CONDUCTIVE GAS

In order that the complete symstem of solutions-of the differ-
ential equations for tho propagation of small disturbances in the
laminar boundary layer shall satlsfy the physical boundary condi- -
tlons, the phese veloclty must depond on the wave lengbh, the
Reynolds number, and the Mach number in a manner that is determined
entlrely by the local distribubtion of mean velocity and mean tempera-
ture across the boundary leyer. .In other words, the anly possible
subsonic distwrbances in the laminar boundary layer sre those for
vhich there exists & definite rolation of the form (referonce 8)

c = c(c., R, Moe) - (2.1)

Since «, R, and M02 are reaml quantities, the rélation (2.1) is
equivalent to the two relations

LS
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o, = or(u., R, M%) (2.1a)

ey = ci(oa, R, Moa) "(2.1b)

The curve ci(oc., R, Moa) =0 for o= cn(R, Mog)) for the neutral
disturbances gives the limits of stabllity of the laminar boundary
layer at a glven value of the Mach pumber, From this curve can be
determined the value of the Reynolds number below which disturbances
of all wave lengths are damped and sbove which self-exclted disturb-
ances of certain wave lengths appesr in a glven laminar boundary-
layer flow. : . '

In reference 8, 1%t 1s shown that the relation (2,1) between
the phase velocity and the wave length takes the following form:
2(, o, ¥58) = F(2) (2.2)

In equation (2.2), F(z) 1z the PietjJens function (reference 11)
defined by the relation '

L TR F L b

F(z) = 1 + e {2,3)
/2, (1) J27, )3/
z£ t 211_1_/.3 {3(1;) }ag
where | " -
oRwW,, ! 1/3 :
e e
[+}

and the quentity I, /3(1) 1s the Hankel function of the first kind
of order 1/3. The prime depotes differentiation with respect
to y. The function E?a., ¢, M,2), which depends only on the

ie
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asymptotic inviscid solutions @, &and ¢p (section b of refer-
ence 8) and not on the Reynolds number, ilg defined as follows:

P11 Prp' + BPip

Poy;  Poo' + BPop

(yl - _yc) E(or,, c, M°2)= , 5 (2.5)
Ty@p' + Mo W tePry
P12' + BPyp |
Ty - M,2c2 -
Ty@1 ! + M2wy Toppy s
Pop” + PPop
Ty - M 22
where
B = a\[l - M 2(1 - ¢)2
%= (75 > (2.6)
i, ,j == l, 2 ) R -

and 'Yl and, y, axe the coordinates of the solid surface and the
"edge™ of the boundary layer, respectively.

The Tistjens function was careﬁl‘l.y recalculated in reference 8,

1
and the real and imsginary parte of the function &(z) = T-f‘-f__)
- Mz

are plotted in figure 9. (The function ©&{z) is found to be morse
suitabl§ then P(z) for the actual calculation of the gtablility
limite. . -

The inviscid solutions Py and 9, were obtained as power

series in o° as Follows (section B of reference 8):

13



NACA TN No. 1360
. o0 . )
(Ple; a'e’ Cs Moa) = (w - ¢) Z u?nh'an(y; ¢ Moe) 2.7)
n=0 .

'q>2<y; o2, c, Moe) = (w - c) Z m%l(y; c, Moe) (2.8)

110

where for n 21

y o y o
T - C
. { y W C)

and.

v
2 T 2
o) [ [ ]

7 W - c)

1
The lower limit in the integrals is taken at the surface merely
for convenience. When y >y, the path of Integration must be
taken below the point y =7 c in the complex y-plane. The power
series in of are then uniformly convergent for any finite value
of a.

1L
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At the surface, the inviscid solutions are readlly evaluated

(Pll = =i -
(pllf - wl!
} ) (2.11)
Ppp = 0
' 1 2 o
Py’ = ';@1 - 4 50) )

At the "edge" of the boundary layer, the inviscid solutions ave .
most convenlently expressed as follows:

c) }: a.gnﬂen(c , M°2> ]
n=0

(1

P12

-3
]

—~
=
]

o |

. »

) °) Z @ Ko\ MO)
n=0

t ‘ 1 - M02(1 - 0)2 = | ‘
P55 (L -¢) [ ITEY: ]Z S S Moe)

n=1

s, (2.12)

i

-
]

(1

[1 - M2(1 - ¢)?
c)
(1 - ¢)?

[ #nnd

15
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where . -
2 . 2 7
Hy (5 M2) = non (Fas ©5 M, )
H, = 1.0
2
LR G Moz) = k2n+l(y2; c, M, )
c ow? s Lo(2.13)
5 1 - Mg=(1 - ¢)=; n P L2
i o, M) = n '(&2; o, M, )
2n-l o (1 - C)Q on
- 2 g
e ) - " o )
= (l - c)z - .
K, = 1.0 ]

With the ald of equations (2.11); the expression for E{d,, c, MOE)
can be rewritten as follows:

‘ w, Ho '+5CP22 N K
oo %) - iy CE )

vy (B! + POp) + ;E (P12" + Borp)

where

]

Me) = 2 (yz i yl) -1

(2.15)

The relstion (2.2) botween the phase velocity and the wave length
1s brought into & form more sultable for the calculation of the .
gtability limits by making use of the fact thaet for real values

of ¢ the imaginary part of E@, c, MOE) is contributed largely

16
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by the integral Kl(c, Mog). (The procedure to be Followed 1is

ldentical with that used by Lin in the limiting ‘cese of '
the incompressible fluid (reference 5, part III)..) Define the
function ®(z) by the relation -

kN

3(z) = TTF (2.16)
Then,
_ 3 . (a+ 1v)
o(z) = T () 1+ a{u + iv) (2.17)
where
'nTl'G CPQE’ + queé .
w4+ ivas 1 4 (2.18)
Ty \Pp' + BP0
Equation (2.17) is equivalent to the two real relations ‘
(1 +A)v
&, (z) = -
) = 73 a2 ¢ AZR (2.19)
@r(z) - (1) (1l + an) + Ave (2.20)
(1 +2)2 + 232 ] -~

The real and imaginary parts of ¢(z) ave plotted against z in
figure 9.

The dominant term in the imaglnary part of the right-hand side
of equation (2.18), which involves K, {e, MOE), is extracted by means
of straightforvard algebraic trans_nf:orma'bions. Relation (2.18) becomes

7



gt

\11 - Moe(l - c)2

[~ (=]
1 - Z a.anﬁ - Z O:Em'lﬂ
n=1 2o n=1 2o+l

W, 'c ™\ 1 - o {1 - ¢c)2
u+ iv= ;—— (Kl+w }) - { 2 - (2.21)
1 1 2o N Y- 20 - o) 2ok
-] : l-Za,%)+ - éﬂl'zm 1ME\:\+J>
L . n=2 (- ) n=1 4
whore
¥,= H2
&nd for h;{3 ) - , .
Tl -5 (2.22e)
Mn = T'_H -2 - E‘n : ’ (2.2211)
When ¢ -ia real,
W le
h'i t:l—-I.P. Kl
Ty,

for those values of « and c¢ that occur in the stability caleulations._ (This approx:lm'tion iz
Justified later in appendix A.) The imaginary part of the inbegral Kl(c, MOE) 1e readily computed.
It is found thet '

09¢T "ON NI YOVN
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IP ch,Ma)z.jn( )S{dy -—)]

_ . . f.c._ (2.23)

("’)2‘"

Now A{c} 1s generally quite small, therefore ®;(z) can be
taken equal to v(c) and &,(z) can be taken equal to u as a
zeroth approximation., From equations (2.19) and (2.20), when ¢

is real
o le T w.,B . op
@iQO)(;(O)) N 1 f 5 c' _ 'c (2.2%)
B! . (wc ) ¥e e

L) g (9 (L0) (2.20)

By equation (2,2h), z(O) 1s related to c with the aid of figure 9;

and by equation (2.25), 1'1(0) is also related to c¢. The guantity eR
is connected with ¢ by means of the.ldentity

: v N3
‘6R = —iC <”’l> o (2.26)
w11+ M3\ e ’

and the corresponding values of o &ar®e ob'bained from equation (2.21)
(slightly transformed) by a me'l;hod. of successive approximation.e

. 19
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Thus,
w'e TS R
I (1-G232) © {1 -c)® G_Z o —Z aenﬂweml
s - _ (2.27)
(‘,Ll-L) l-Z m%;\[lfbiég(l -0)" (ﬁlpi Gam.len.;._'D
n=2 - . (1* 0)2 n=1
where

w,tc . Ky o
L= 2= RP (K +—2-)

(The symbols My and N-k .now designete tho real parts. of the
integrals M and Ny.) The iterstion process is begun by taking
a sultable initial value of o on the right-hand side of equa-
tion (2.27). The methods adopted for compubting tueso inbegrals

when the mean velocity-temperature profile is lmown are described
in appendixes A to C,

For grester accuracy, the values of z and. u for a given
real value of c¢ are camputed by successive gpproximations. From
equations (2.19) and (2.20),

.'Qi(é"'l) (z(n+l)) = | .(l'+ Liv- | (228) .
- (1 + Nu(n))(' + 2542 .
( ' (1-+'A.u(n))2 + KEVQ A 2
4 n+l). - Qr(n-t—l) (z(n-:-l)) _ ' _ . v (2.29)

(1 + ) (l + Xit(n)> 1+ auln)

The value of v is8 always approximated. by relation.(e.Eh),

. Curves of wave mumbor against Reynolds number for the neutral
dlsturbance have been caleulated for 10 representetive cases
(fig. 4), that is, insulatod surface at Mach numbers of 0, 0.50, \
0.70, 0.90, 1,10, end 1.30 and heat transfer across the solld surface

20
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at a Mach mumber of 0.70 with values of the ratio of surface tempera-
ture to free-stream temperature Ty of 0.70, 0.80, 0.90, and 1.25.
{It is Pound more desirable to base the nondimensional wave nueber and
the Reynolds number on the momentum thickness 6, which is a direct
measure of the skin fricktion, rather than on the bowndary-layer thick-
ness &, which is scamewhat indefinite.)

In figure 5 the minimm criticel Reynolds mumber Reor , or the

. min
gtability limit, is plotted egainst Mach number for the Insulated
surface; and in figure 6(a) P.ch ‘is plotted against  T; for

_ min
the cooled or heated surface at a Mach number of 0.70., The marked
stabilizing influence of & withdrawal of heat from the fluid is
clearly evident., Discussion of the physical significance of these
numerical results is reserved untll after goneral criterions for
the stability of tho laminar boundary leysr have been obbtained.

3. DESTABILIZING INFLUFNCE OF VISCOSTTY AT VERY LARGE REYNOLDS
NUMBERS; EXTENSION OF HEISENBERG'S CRITERION - '
PO THE COMPRESSIBLE TLUID '

The mumerical calculation of the limits of stability for several
particular cases gives some indicabion of the effects of free-streanm
Mach number and thermasl conditions et the solid surface on the sta- -
bility of the laminar boundary layer. It would be very desirable,
howsver, to estgblish general criterions for laminar instability.

For the incomproessible fluid, Helscenboerg has shown that the influence
of viscosity 1s generally destablilizing at very large Reynolds
nwmbers (reference 1). EHEis criterion can be stated as follows: If
a neutral disturbance of nonvenishing phase volocity and finlte wave
length exists in an inviscid filuild (R—>®) for a glven mean veloclty
distribubion, a disturbance of tho same wave lengbh is mmstable, or
gelf-excited, in the real fluid at vory large (but finite) Reynolds
muboers. ’

The same conclusion can bo drawm from Prandtl’s discussion of
the enorgy balance for small dietirbances in the laminar boundary
layer (reforence 12). : S

Helsenberg's criterion is established for subsonic disturbances
in Yhe laminar boundary layer of a compressible fluid by an argument
quite similer to that which he gave origlnally for the incomprossible
fluid end which was later supplemented by Lin (reference 5, part ITI).

21
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At very large Reynolds numbers, the relation (2.1) between the phase
veloclty and the wave lengbh can be Gomsifderably simplified. When M
1s finlte and ¢ does-not vanlsh, fzP>> 1 -at large Reynolds.
numbers.  The asymptotic behavior of the Tietjens funobtion F(z)

ap |z}~ 3is given by (reference 5; pert I) .

S oL/t
(71~ %) Fla) = ——= (3.1)
' .V[ R :
e~ C
Ve
and the relation (2.1) becdmes ™ o
«1/&
( I:‘ - yc) (m, C, MOE) }!11(0.':, C, M ) (3'2)
1/ R
& - C
Ve
where E(cn, c,.Moz) is glven by equation (Z2.14).
© Suppome that a neutra'l disturbance of nonvenlshing weve
% : 2 ' S o
nwnber gy ="i£ and phase veloclty >l - i;f— existe in 'bhe
8.

inviscid fluid ( 'Limiting cagse of an infinite Beynolds num:ber) "The
phase velocity ¢ . is a conbtinuous function of R, and for a dis-
'burbanue of glven wave number % the vaelue of. c¢. at very large

. Reynoui;—* numbers will di*’ier fram' c,° by a smald increment Ac.
8

Both sides of equation (3.2) can be doveloped im a Taylor's series
in ‘Ac, and an expression Tor Ac can be obtsined as follows:

' o
: Lo 2\ L : e) 2
El(d‘.’ C, MO ) = El(?’ﬂ’ GS"Mo- (é';‘"’> JAY IR S
CB)G'S . ’

_eni/k o : -
2 [1 4+ 0(2c)] - - (3.3)
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The boundary condition

q)22l (a's; ) Moe) + 35(922 (a's:' Cqs Moa) = 0 (.Bdh)

must be satlisfied for the inviscid neubral disturbance, and the

functien El(cas, Cas M02) vanishes (equation 2.14). Recognizing
that .

(3.5)

From ‘equation (2.14),

(3.6)

d [ 2 2
= {o Mo ., c, M")+Bo c, M ]
( BEl) = - Osz{ac 22 ( 87 7 "o ) 22 @B, > o ) c=Cgq
d - .

23



By equations (2.12) end the bomdary condiﬁon (3.4), the quantity (—6—:) is evalvated as follows:

Cg )ty
1)
dc Cgr

2(1 Cq

2 @’Cu)an:l% -]Kzn-l'és’nb )_"rﬁ-Mo (lucg) nzﬁabﬁlr'c‘n'(és’_mo) = (1”05)2 (1- ; anﬂan(a,ld

Ty

(‘ -csfga.fm']ﬂan Cg ,MOE) + -Vlﬂoa(l—csf;%@ﬂgn_l (cﬂ ,MD?')

13

where the primes now dencte dlfferentiation with respect to ¢.. Forr-smell valuss o:t" cg and @y, the

aE .
gquantity- (—50—]) i8 piven epproximately by the rslation

ca,q.s |
B\ e 2-—!-!021-032‘ ' |
(‘a"‘) ' =-r[ Lol By (o 7

: Cs: 1 tu.s(l . 05)3 Vl - B 21 - o)

P
(WS
3 -

(3.8)

et

" 09ET *ON NI VOVA
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and the expression for Ac is

y | g \jl - M2 - o 2 /4

T s 52-(1-(505) oo 1 - 150 - o) 17 G 1)

Evalvation of the integral Kl@ R Mf) yields the following resulbs

(3.9)

: oy, ‘w2 [-a (w?]
K, (c, M%) = - + —f — (In ¢ ~ ix) + O(1)  (3.10)
l( 0) wl_'c -(Wc:)3 dr \T =

_ | ' . |
Since the guantity E"—; (g—)} vanishes (reference 8), differ-

entiation of equation (3.10) gives

. T 3 p 2 ad /! ] . N
K o, Mo o — 48 {_.(-j] ‘) In ¢ ~1x)+0(1)
1 (cs o] ) Wlscsg"' e (Wc,)3 dy \1 'W-—-cf/c § ( e .cs ﬂ)-{-

(3.11)

Thus, K_L'<cs, Mog) is approximately real and positive for small
1
values of c . With ¢y > 1 - ik I.P. &c mwat also be positive
' o]
(equation (3.9)); therefore, a subsonic disturbance of wave
length A, # O, vhich is neutral in the inviscid compressible

fluid, is self-exclted in the real compressible fluid at very large
(but fini‘be) Reynolds numbers.
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In reference &, it was proved that a noutral subsonic boundary-
layer dlsturbance of nonvanishing phase velocity and finlte wave
length exists in an inviscid compressible fluld only if the quan-

g 1
tity Q__G‘E}_) vanishes for some value of w> 1 - —, If this
ar\dy M,

condition is satisfled, then self-exclited subsonic disturbances
also exist in the fluid, and the leminer boundory layer is unstable
in the .limiting case of an infintte Reynolds number. By the exten-
slon of Helsenberg's criterion to the campressible fiuid, i1t can be
geen that, Tar fram stabilizing the flow, the amall viscosity in
the resl fluld has, on the contrary, a destabilizing influenco at
very large Roynolds numbers. Thus, any leminar boundary-layocr flow

in a viscous conductive gas for which the quanbity :—-;_ (p:‘—;r vanishes

1 )
for some valve of w> 1 T is unstable at sufficiently high (but
- _

finite) Reynolds numbers.

Unlese the condition i— éd-“?-) =0 for some valug of w> 1 - —Jl—
ay \ dy M

o]
1s satisfled, all subsonlc disturbances of finlite wave length are
damped in the limiting case of infinlte Reynolds number, snd the
invisecld flow im steble, Since the offect of viscosity 1s des-
tabilizing at very large Reynolds numbers, however, a laminar
boundary flow that is steble in the limit of infinite Reynolds
number is not necessarlly stable at large Reynolds numbers when the
viscosity of the fluid is considered. %goo fig. ¥(1).) In fact,
for the incompressible fluid,Lin has shown that overy leminar
boundary-layer flowv is ungtable at sufficiontly hilgh Reynolds
2

numbers, whethor or mot the vorticlty gradient 2w vanishes (refer-

- dya
ence 5, part III). TIun order to settle this question for the com-
prossible £luid in goneral berms, the relation (2.1) betweon the
complex phase velocity and the wave lengbth at large Reynolds numbers

must now be studied for flows in vhich tho quantity %—-y(g’-—;) doos

not venish for any valus of w S 1 =~ —:E-—
o]
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‘%, STABILITY OF LAMINAR BOUNDARY LAYFR AT LARGE REYNOLDS NUMBERS

The neutral subsonic disturbance marks a possible "boundary"
between the damped and the self-excited disturbance, that 1is,
between stable and unstaeble flow. Thus, the general conditions
under which gelf-exclted disturbances exlat in the laminar boundary
layer at large Reynolds numbers can be determined from a study of
the behavior of the curve of o« against R for the nsubral
disturbances, When the mean free-stream velocity 1s subsonic (M0< J) s

the physical situation for the subsonic disturbences at large
Reynolds numbers is gquite similar to the analogous situation for
the incompressible fluid. The curve of o against R for the
neutral disturbences can be expected to have two distinct asymptotic
branches that enclose a region of instability in the «,R-plane,
regardless of the local distribution of msan velocity and mean
temperature across the boundary layor. When the mean free-stream
veloclity 1s supersonic (Mo > l) the situation is somswhat dif-

ferent; wnder certain conditions (soon to be é.efineg.) a neubral

or a self-exclted subsonic disturbance c>1 - L-J;—— cennot exist
(o]

at any value of the Reynolds number. For this reason, 1t 1s more

convenlent to study the case of subsonlc and supersonic free-stream

veloclty seperately. : '

a. Subsonic Freo-Stream Velocity (Mo < 1)

'The asymptotic behavior at large Reynolds numbers of the curve
of o against R for the nbutral disturbances is detormined by
the relations (2.19) to (2.22) betwoen @, R, and ¢ for real
values of c. For small values of « and c, +hese relations
are given approximately by

. ' T 2 t '
(o) = 0,(2) = - ’_‘;’1 e (c s Ey{g_)] | (1)
1 W' \ o :

u = 0,(z) (1.2)
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1.76
o b7

S (’:’)3("’1')2 (4.3)

wyfe 1 -
&= e 1-M2(1 - c)® - (h.4)
Tl n o . ) - _

A8 R——¥o,  elther z ——» o o 2z romains finite wvhile . ,
both o and ¢ approach 0. These two posaibilities correspond
to two asymptotic branches of the curve of o sgainst R.

brejichi« If 2z remasns finlte as R—» e, then c-—30;
and by equation (k4,1), @i(z)-—-}O. Therefore, z-—»2.29 while
u-—32.29 (fig. 9). From equations (4.3) end (4.4). along the
lower branch of the curve of against R for neutral stability

R = (wl')ﬁ(l - M02)3/2 i'..

1.24 !

(4.5)

'

T
c =2.29 X o (k.5)

wl'_\JJ. - M2

and «—30 at large Reynolds mumbers (fiz. (1)),

Upper brendh.- Along the upper branch of the curve of o
agalast for neutrsl stadility, 2z -—de and

mnfe T2 Fa N\ 1 wy !
@1(2) = - T c: 3 [""(5—)] —— — l-—-—- (%.7)
' L (wc )- & =0 ng3 2a ?—- 3
V c
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L - a fw
while u-—>1.0 (fig. 9 and oguation (4.2)). TIf the quantity --(T

does not vanish for any value of w > O, <then by egquation (k. 7)
¢ must approach zero asg z—>®, Along this branch,

-

(n)” G- “Qs/ | (4.8)

2:@1' 5.2k {%( l}e 3

(S

cw 0 (4,9)

\{ 2
wl' 1l - M0

and. a-=-»0 ab large Reynolds numbers (fig. 4(1)).

t
On the other hand, if 4 venighgs for some value

ay\? .
" of w=.cg >0, then by equation (4.7), ¢—>cg &and o~ O

oth z and R approach . Now,

B0 e BO)E &

2 Lo
& - ] .

Ie [—C—)} does not vanish (see appendix D), then by equa-~
1y2 ) .

“tions (L.4t) and (4.7), along the upper branch of the ciwve of «
against R for the neutral disturbances, .
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_(a ) M (h.11)

2“2,1; o, 21-1- d.2 ()l c - CB)Q

¥ 201 - c)2 | (4,12)

end c—3c # 0, Q- ;! 0 at large Reynolds mumbers.(figs. (k)
and 4(1)). If [ () vanislles, the relation (4.11) is replaced

by

i .ﬂaI'lO.Qll- i(ﬂ) | 2 mc5 (c2 - 052)2
. dy3 - ?

which reduces to the relation obtalned by Iin in the limiting case
of an incompressible fluid when MQ-—--)O the solld boundary is

insulated, and +' =.0 'for some valus of w = cg > 0. (See equa-’
tion (12.22) of reference 5, part III.) -

(&.,23)

?
If the quantity ‘}__(‘L) venishes at the solicl boundery (thet

is. for w= 0), it can be shown from the equations of motion

{appendix D) that (—--)] 1s always positive - except in the

liniting case of an incompresaible fluid, For ecmaJ_l values of y,
t o]
the quantities :-; (g;) and -;g— are both positive and increasing.
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For large values of ¥, however, ;--—90, physically; there-

' . t to.
fore %— must have a maximum, or -g"—y -‘g— = 0 for some value
of w>0, and this case is no different from the general case
tresated in the preceding paragraph.. In the limlting case of an incom-

pressible fluid, when W' vanishes at the surface, wc“= wli'f. 2
2{w. !
o (")
gince ‘wl"" always vanishes in this case. From equation (4.8)

the relation between o and R along the upper branch of the
neutral stability curve is therefore

260 1 1 -
R'z_ (ig (wliVEGlO : -(.l"l-b‘)

which is identical with equation (12.19) in reference 5, part III,

I t
Thus, regardless of the behavior of the quantity g:y. -;L -

regardless of the local distribution of mean veloclty and mean
temperature across the boundary layer - when My < 1, the curve
of o against R for the neutral disturbances has two distinct
branches at large Reynolds mummbers. JFrom physical considerations 5
all subsonic disturbances must be damped when the wave lensgth is
sufficiently small (e large) or the Reynolds mmiber is sufficiently
low. Consequently, the two branches of the curve of o against R
for the neutral disturbancés must Join evenbually, end the region
between them in the -«,R-plane is a region of ingtability; that is;
at a given value of the Reynolds number, subsonic dlsturbances with
wave lengths lying between two critical values )"l and >\.2 (cal

and me) ‘are self-excited., Thus, when M, < 1, ény laminar

boundary-layer flow in a viscous conductive gas 1s wmetablo ab
sufficlently high (but finite) Reynolds numbers.

The lower branch of the curve of .@ against R for the neutral

4
disburbances l1s virtually unaffected by tho distribution of g‘-—(g——)
dy

across the boundery layer, but for the upper branch the behavior of
31
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' a fw' d [+
the quantity =—{-—] 18 decisive. VWhen —=(-—~) =0 for same
dy \T dy \T
value of ~w = ¢, > 0, the neutral subsonic disturbance passes

continuously into the characteristic inviscid disturbance c=cg
and o = @y @8 R—~>ew, This result is in accordance with the

results obtalned in reference 9 for the inviscid compressible fluid
and 1s in agreement with Helsenberg's criterion. In addition,

all subsonic disturbances of finite wave length A > Ay = == (and

nonvanishing phase velocity 0 < ¢, < Cg) ave gelf~oxcited in the

limiting case of infinite Reynolde mumber. On the other hami,
H .

when ,‘};_ g—) ‘does not vanish for any value of w> 0, then

except for the “singular" neutral disturbance of ze10 phass velocity
end infinite wave length (c = 0 and « = 0), all disturbances

are damped In the inviscid compressible fluld. This singular
neutral dlsturbance can be regarded as the limiting case of the
neutral subsonic disturbance in a real compressible fluid ag R-—yw,

b. Supergonic Free-Stream Veloclty (Mo > l)

When the velocity of the free stream ls supersonic, the sub-
sonlc boundary-layer disturbances must satisfy not only the differ-
entlal equations and ths bowmdary condlitions of the problem bub

also the physical requ:lremen"b that C.. >1- %'I- The asymptotlc

o
behavior at large Reynolds numboers of the curve of o against R
for the neutral subsonic disturbances is determined by the approxi-
mate relations (L.1) to (L4.4), with the additional rostriction

that ¢ > 1 --I%I» A8 c—31 - —;;—, o-30 by eciuation (L.b);

o o)
thorefore R-—-»® by equation (4.3). The corrosponding value (or
values) of z ig determined by egquation (L.1) as Tollowss

1
o -2) |
@, (z) = v{c) = V('%)’ e il E"(l) (k.15)
\ M Ty (w')3 &y \T w:c.—.l--.l- _
' My
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. ;
Now fram physical considerations, % (—%—) < 0 fTor large

LY

1
velues of y. Therefore, if %(g—-) = 0 (changes sign) for same

!

value of w=c¢, > 1 - 9—'—-, - ‘then, in general, e (x >0

8 M dy \T 1

Q
w=la—
M, .
, -
and 85(z) , <O (equation (k,15)). From figure 9; 1% cdn De
C=lmm—

. e
goen that in this case there is only one value of 2z (%3, say)
corresponding to the valus of Qi(z) given by equation %ll—.15) :

From equations (4.2) to (L.4), along the loyer branch of the curve
of « ageinst R for the neutral distwrbances, -

Tll.TG(Wl ,) 2213 1

R= — (k.16)
| 1-ﬁ9
. . 0/ .
1 "——
' ——
1 ( i M0> o A1
o . e - (1 - = (u.17)
Tyuy | Mo
, 1
and c—31 - R at large Reynolds numbers (fig. 4(k)). The upper

. . o _ .
branch of the curve in this case is given by equations (k.11)

2 ) '
and (4.12), or by equations (k.,13) and (4.12) if f‘___(f_.)}
T
. aye 1
vanishes, with c——cg > 1 - and a—>ay ¥ O.
) o . .
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! 1
Ie a(x venighes for W= 1 - =-, then z-—>c as R-J
ay \T : M,
along the upper branch of the curve of « against R for the
wy! '
1

VEcr,—-ﬁ 3 _

c

as ¢c—~—1 - -B-dji-— in this case also (equation (4.17) with w = 1.0)
0 .

neutral disturbances, and 04(2z)— ., Now a=—3>0

go that

R = 2w )2 w? 11

ﬂal.lh.el\t 1. _I_J:_ FEE_;_' ﬁ)'j }2 o
o May= \T /§,

Along the lower branch of the curve of o against R at large

Reynolds muwbers, &, R, eand ¢ are connected by equations (k.16)

and (4.17), with zy = 2.29 and w, = 2.29. In spite of the fact
a [fw'

that ==l =—}=0 for w= 1 - ..1_., a neutral sonic disturbance
dy \T M, .

l v
c=1- E—-) of finite wave length does not exist In the inviscild
7o

(k.18)

(o]

fluid unless K (c) = z - M2 |&y 1s positive. (See
fe} (‘W’ = 0)2 '

gection 10 of reference 8.) Calculation shows that Kl(c) is almost

always negative (equation (3.11)); therefore, in general, the sonic
disturbance of infinite wave length (a = 0) with constant phase
acrogs the boundary layer exists only in the inviscid £luid (R—> o).

d wi .
If — |—] does not vanish for any value of w2> 1 = -]-'—-, it
dy \T = M,
t
is certain that [i- (F—)] 1 < 0 and by equation (4.15)
3y W=Cmle —
o}
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Qi(z) 1 >0, When v 1 < 0.580 (approx.), there are two
oo o
(o] -Mo
values of z (z,) and z3, 'say, wi'bh z3 > Zp corregponding to

the value of &;(z) given by equation (k.15), (See fig. 9.) Along

the two asymptotic branches of the curve of « against R fox-the
neutral disturbances, o, and c¢ are cormected by relations

of the form of egquations (11- 16) and (4.17), with z and u replaced
by zp emd wup, respactively, along the lowsr branch and by Z3

and u3 , Trespectively, along the upper branch., At a glven v&lue of

the Mach number, the value of v 1 is controlled by the thermsl condi-
l--‘-o--
M, . ~
tions at the solid surface. (See ssction _6.) Wheh these conditions ars
such that v 1 = 0.58, then Z- = Z_, and ths two esymptotic branches
. . J
1 Mo

of the curve of « against R for the neutral disturbences coin-
cide. When v 20.580 (approx.), it is impossible for a

l-a—-—

M,

neutral or a. self-excited supsonic aisturbance to exist in the
laminar boundary layer of a viscous conductive gas at any value of
the Reynolds number, In other words, if v 4 2.0.580 (approx.),

. . 1___ - . !

. My

the laminsr boundary layer is stable at all values of the Reynolds
number, (Of course, in any glven cage, the critical conditions
boyond which only damped subsonic disturbancesg exist can be cal-
culated more accurately from the relations (2.28) and (2.29).
See section 5 on minimm critical Reynolds mumber.)

The preceding conclusion can alsc Dbe deduced, at least qualite-
tively, from the resultes of a study of the energy balance for a
neutral subsonic disturbancs in the laminar -boundary layor. A
neutral subsonic disturbance can exist only when the destabilizing
offect of viscosity near tho solid surface, the damping offect of
viscosity in the fluld, and +he enecrgy 'bz-ans:f‘er between mean flow
and disturbance in the vicinity of the immer "critical layer" all
balance out to give a zero (average) net rate of changs of the’
ocnergy of the disturbance. (See Schlichbing's discussion for -
incampressible fluid in referenco 4, ) In reference 8 it is showmn
that the sign and megnitude of the phase shift Jn w¢' +through
the inner "critical layor" at w= c is determined by the sign
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and.magnitude of the guantity [ (;—-] « The corresponding {'
W=C .
epparent ' shear stress To * = -p* u*'v*' which is zeyo for w < ¢ In the

inviscid compressible fluid is given by the following expresslon

for w>c (reference 8),
[ ( )] (4.19)

cr !
If the qnantity- [EL-<5L)] is negative, the mean flow absorbs

-p*xfux %
jj»pj(%ﬂ Eﬂ

energy from the dieturbance; irf [g&_(;i)] is positive, energy

: =_C

passes fram the mean flow to the disturbance. In the real com-

pressible fluld, the thickness of the inner critical layer in which -
1

the viscous forces are important 1s of the order of

s and
(@3_ 1/3 .
v

the phase shift' in w*' is actuslly brought aboult by the effects

of viscous diffusion (of the quantity p%?) through this layer.

As showm by Prandtl (reference 12}, the destabilizing effect
of viscosity near the solid sififace 1g 16 shift the phase of the

"frictional® component ufr*' of the disturbance velocity agminst

the phase of the "frictionless" or "inyisoid?'caméonenb g pe*

in a thin layer of fluld of thickness.of the order of

By continuity, the assoclated normal componsent vfr*f_-is of, the.

. (Tt wes shown_ in part 1 of
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reference 8, that for large values of oR +%he "frictional®

compongnts of the disturbance also satisfy the conbinuity rela-
e ? Syt

tion, se—'4 =>— = 0 in the compressible fluld.) The corre-
Ox* oy* : .

sponding appasrent shear stress . T1¥* = -pl* u*?y¥' is ziven by the

expression

— TR ; *"EIQ,
T* & pR (TR)2 X Y (%.20)
1 po o] U
p ¥ un_¥ R :
o o Aite =

o
Yy
Bubt from equatioms (2,11)
u,,  *! p Y
inv 1 . 1 .
- | = %21’ = — oo (k21)
u.o* 4 Tl - Mo c c

(k.22)

Since the shear stress assqci’atéd Wi"i:h the d.estabiiizing effect
- of viscoslty near the solid surface and the shear stress near the
critical layer act roushly throughout the same region of the fluvid, the

. .. h.
ratio of the rates of energy btransferred [approxime etely TH* ——-:;* dy*)
*
. 0 .

by the two physical processes is
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. I' 2 -
B % * . -
Eq* T * 2 Tl ("c')S B

= -;- iv(c) | 23/2
whe:i'e

23201—- Z

V. (wl,)a

1 N
If the quantity %—5 (%—) is negative and sufficie;ltly large
~when W= Cq, S8y, then the rate at which energy is absorbed ‘by-

the mean flow near the imner “criticel layer" plus the rate at which

the energy of the disturbance is dissipated by viscous actlon more

than counterbalences the rate at whilch energy passes fram the msan

flow to the disturbance because of the destabllizing effect of

viscosity near the solid surface. Consequently, a neubtral subsonic

disturbance with the phuse velocity ¢ =>= ey does not exist; in

fact, all subsonic disturbances for which ¢ > ¢, are damped.

When Mo* < 1, there is always a range of values of phase veloclity
B %

0Lck $ o, for which the ratio EE‘; , glven by eq_uation (4.22),

is small enough for neutral (and self-excited) su'bsonic disturbances
to exist for Reynolds numbers greater than a certain criticel valuve.
Vhen M, > 1, however, because of the physical requirement
that ¢ > 1 - =-S5 0, the possibility exists that for certain
M, : : .
t
thermal conditlons at the solid surface the quantity [-g;’— (%—)]

W=C
. B *

is always sufficiently large negatively (and therefors E%l ig
1
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sufficiently large) so that only damped. subsonic disturbances exist

o . e e e . . t
at all Reynolds mumbers, OF course, if % (g—) venishes for-some
value of w2>1 - -;in, it is certain that v{c) ¢ 0.580 for some
O

range of values of the phase velocity' 1- -;T <c<e or In that

case, neutral and self-excited subsonic dis'burbances al'ways exist
for R >R, and the flow is always unstable et sufficiently
Tmin

high Reynolds numbers, in accordance with Helsenberg's criterion
as extended to the compressi ble fluid (section 2).

A-discussion of the significance of these results is reserved
for a leter sectlion (section 6) in vwhich ths behavior of the guan-

tity :-} %) will be related directly to the thermal conditions

at the solid surface and. the free-gtream Mach mumber.
5, CRITERION FOR THE MINIMUM CRITICAL REYNOLDS NUMBER

The obJect of the stability enalysls 1s not only to determine
the general conditions wnder which the laminar boundary layer is
ungtable at sufficiently high Reynolds nuwnbers but also, if possible,
to obtain some simple criterion for the limit of stabllity of the
flow (minimum critical Reynolds number) in terms of the locsl
disgtribution of mean velocity and mean temperature across the
boundary layer., For plane Couette motion (1insar velocity profils)
and plane Poiseullls motion (parabolic velocity profile) in an
' incompressi‘ble fluid, Synge (reference 13) was able to prove
rigorously that a minimmn critical Reynolds number actually exists below
which the flow is stabls. His proof applies also to the leminar boundary
layer in an incampressible fluld, with only a slight modification (refer-
ence 5, part III). Such a proof is more difficult to give for the laminar
boundary layer in a viscous conductive gas; howover, the existence,
in gonseral, of a minimum critical Reynolds mumber can be inferred
from purely physical considerations. A sbtudy of the energy balance
for small dlsturbances in the laminar boundary layer shows that the
ratlo of the rate of viscous dissipation to the rate of energy
transfer near the critical layer is 1/R for a disburbasnce of
glven wave length while the onergy transfer associated with the
destabilizing action of viscosity near the s0lid surface boars the

ratio 1/11—2- to the emorgy transfer near the critical layer. Thus,
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‘the effects of viscous dissipation will predominate at sufficiently
low Reynolds nvmbers and all subsonic disturbances willl be damped.
The two distinct asymptoblé branches of the curve of a against R
for the neutral disburbances at large Reynolds numbers must Join
eventually (section 4) and the flow is stable for all Reynolds
nubers less then a certain critlcal wvalue. i .

An estimate of the value of Rgy Tgin , vhich will. serve as &

gtability criterion,is obtained by taking the phase. veloci'by c
%o have the maximum possible value ¢, for a neutral st_:.bepnic
disturbance, that is, for ¢ > ¢y, all subsonic dlsturbances are
damped. This condition ig very'nearly egquivalent to the condlition
thaet oR be a minimm, which was employed by Lin foxr the case of
the incompressible fluid (p. 285 of reference 5, part IXI). The condi-
tion ¢ = o, ocours when {p (z} is 2 maximum: that is, vhen <I>_i(z) =0.58,

= 3.22  and @r( ) = 1.48 (fig., 9). The corresponding valus
oi‘ c = o, can be calculated from the relaticns (2.19) to (2.22).

Neglec’bing terms in A2 (A is usually very small) and taking u=21.50
_ glves

o,(z) =[1 - &alef] v(o) . (5.1)

vhere

wi'e W' '
(¢) = - ' .2
.'vc ﬂ__Tl' [(w)3dy<> (5.2)

and

x(c)

e (oo m) (5.3)
C R

It is only necessary to plot the quantity (1 - 2\)v agalnet—0a
for a given laminar boundary-layer Tlow and find the value of c = ¢
for which (1 - 2A)v = 0.580., The correspond.ing value of oR is
determined from the relation

(o]

Lo



NACA TN Wo. 1360

2 - PEET () () o0

and this value of oR is very cloge to the minimum valyp of oR.
A rough estimate of the valus of o for -¢c = ¢, is giwen by the

following relation (eguation (2.27)):

@ = Vl'_ca\fl B GRS M (5.5)

This estimated valus of « is, in general, too small, The
following estimnte of R is obtained by malcing an approxi.mate

allowance for thig discrepancy and by taking round numbers:

25‘ [T(cb)]l‘Ys wl' . (5.6)

R &
Crmin col"dl - M‘_;,E(l - co)2

or

TR,

By . . (5.7)
win chl - M, (1 - co)e '

For zero pressure gradient, the slops of the wvelocity profilé &t

o
the surface SE is glven very closely by (appondix B)
M
1

L1
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. <5'>1 (a“

),

- 0.332"
Ty
Therefore
g \L.T6
T
R, sl ()] (5.8)
Crpin T

AJ 02(1 _ GO)EI

The expression (5.8) is useful as a rough criterion Tor the dependence
of Re on the local distribution of mean velocity and mean

Cl‘min
' temperature across the boundary layer. It is immediately evident

that By —bw when o,—>1 - . Whem [(1 - 2A)v] >0.5%,
Cx, nin MO c_l..!'_...
o

the laminer boundary layer 1s stable &t all valuss of the Re;gnold.s
number. (This condition ig an improvement on the stability condl-

tion v 2 0.58 (approx.) stated in section L.)
1-"“ . ' i
MO

In the following tables and in figures 5 and 6(a) the estimated
valves of Re given by equation ?WB) can be compared with the
“Tmin
values of Re faken from the calculated curves of tg ageinst Ry
Tmin -
for the noutral disturbances. For the lnsulated surface, the values
are - . : -

L2
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. Rg Rg
M % {c,) Cmin CTmin
° s . {est,). - {fig. &)
o] 0.4186 1,0000 195 150
.50 . 3100 1.0L08 170 136
.70 . 4600 1,0782 . 150 126
.90 L4850 1,125 T 129 115
1.10 .5139 1.1803 109 10k
1.30 -, 5450 1.24k06 92 92

For the 'noﬁinsulate_d. surface when M_ = 0.70, the values are

R Rg
. Tl co N (Co) -ecrmin Crmin
’ (est.) (fig. k)
0.70 0.1872 0.7712 5377 5150
.80 2619 8716 1463 - 1440
© .90 .339% L9562 5ol 523
1,25 ,5194 1,14k9 8 . 63

The expression (5.8) for Ro.. '~ glves the correct order of

. magnitude and the proper variation of the stability limit with Mach
number and with surface temperature &b a given Mach number.

The form of the criterion for the minimm critical Reynolds
number (equation (5.8)) and the results of the detailed stability
calculations for several representative cases (figs. 3 and 4) show
that the distribution of the product of the denslty and the

vofticity pg across the boundary layer largely detexrmines the

limits of stebility of laminar boundary-layer flow., The fact that
the "proper" Reynolds number that appears in the boundary-layer
stabillity calculations 18 based on the kinematic viscosity at the
inner critical -layer (where the viscous forces are important)
rather than In the fres stresm also enters the problem, dbut it
amounts only to a numerical and not a qualitative change when the
usual Reynolds number based on free-stream kinematic viscosity is
finally computed. Whether the. value of Recrmi for a glven

: n

k3
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laminar boundary-layer flow i larger or smaller than the value
“of Recr " for the Blaslus flow, for example, is determined
“min ’

entirely by the distribution of pg'--; across the bowndary leyer.

If the quantity % \pdﬁ> 15 negative and large neer the solld

ay
gurface =0 that the quantity (L - 22)v(c) reaches the value 0.580
when the value of ¢ = ¢, 1s less than 0.4186, the flow is rela-

‘ a aw
tively more stable than the Blasiug flow. If theo guantity 5.} pd-y-)

is positive near the solid surface, so that (1L - 2A)v(e) = 0,580

when w(or ¢} > 0.4186, +the flow is relatively less stable than

the Blesius flow. Thus, the question of the relative influence

on Recr of the klnematic viscosity at the immoer critical layer
min

and the distribubion of pg"-;r acrose the bowndary layer, waich

remained open in the concluding discussions of reference 8, is now
settled, '

The physical basis for the prodominant influence on Recr

t ’ d- )
.of the distribution of p% across tho boundary layer is to be

found in a study of the energy balance for a subsonlc boundary-layer
disturbance (section 4). The distridution of p:-ff determines the
' AL

maximum possible value of the phase velocitby ¢, or the maximum

possible distance of the inner critical layer from the solid surface
for & neutral subsonic-disturbance. The greater the distance of,
the inmer critical layer from the solid surfaceé,” the greater
(rolatively) the rate of energy absorbed by the mean flew from tho
disturbance in tho vicinity of the critical layor {oguations(h,21)
and (%.22)). When ¢, is large, thorefore, the enorgy balance’

for a neutral subsonic disturbance is achieved only when the
destabilizing action of viscosity near tho molid svrj“ace is rola-

) 1 3/2

-biv"ely large or, in other words, when = cé is large

and.._"bhe Reynolds number Ry, vwhich is vory noarly oqual to Rcrmin’

is’ coxrespondingly emall. On the other hand, when o, is small
and the imner critical layer is close to the golid swrface, thoe rate

Lh .
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at which energy is absorbed from the disturbance ‘near the critical
 layer is relatively small and the rate at which energy passes to
the disturbence near the solid surface, which is of the order

of ——--}——, is also relatively smell for 'energ_;y 'balanée; conse-
Vo
gquently R

(e

Clmin is large.

6. PHYSICAL SIGNIFICANCE OF RESULTS OF STABLLITY ANALYSTS

&, General

From the results obvbtai ned. in the present paper end in refer-
ence 8, 1t 1s clear that the stability of the laminar boundary
layer in. & compressible fluld 1s governed by the action of both.
viscous and inextia forces. Just as in the case of an incompressible
Tluid, the stability problem cannot be undersbtood unless the viscosity
- of the fiuid is taken into account. Thus, vhether or not a laminar
boundary-layer flow is wnstable in the inviscid compressi‘ble
fluld (R—>o), 'bhat is, vhether or not the product of the density

and the vor’cici'by pd:;r has an extremm for some va‘Lue of w> 1 -%-—,
: A ~ I

'bhere 1s always some value of the Reynolds number Reom 'blelow L.

whilch the effect of viscous dissipation prodominates and the flow

is stable. On the other hand, at very large Reynolds numbers the

influence .of viscosity is destabilizing. If the froe-stroeanm

velocity is subsonlc, any laminer boundary-layer £low is unstable

at sufficiently high (but finite) Reynolds numbers, whether®or not

the flow is stable in the 'inviscid £l uid. wb.en om.;y' the inertis

:E'orces are considered

The action oi‘ the inertia forces is more decisive :E'or the
sbablility of the laminar boundary layer if the fros-stroam veloci ty
is supsrsonic. Because of the physical requirement-that thé rela-
tive phase velocity (c - 1) of the bowndary-layer disturbancos

must be su'bsonic, it _o}_lows that ¢ > l --I':-E- > O and 'bhe quan-

tity [E‘Y-' (pé‘y-)] can be large onough ne@ative‘ly und.er certain

W=C :
conditions so that tho suabilizing actlon of the *ner'bia forces

lg."j
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neax- the innmer critical layer (whers w= ¢> 0) is not overcoms
by the destabilizing action of viscosity near the solid surface.
In that case, undemped disturbances cennot exist in the fluld, .and
the flow 1z stable at all values of the Reynolds number.

Regardless of the free-stream veloclty, the distribution of
the product of the density and the vorticity pi—‘yi acrogs the

boundary layer determines the actual Limit of stebllity, or the
minimum critical Reynolds aumber, for laminar boundary-layer flow
in a viscous conductive gas (equation (7,8)). Since the distri-

bution of pg'-;; acrogs the bowndary layer in turn is determined by

the free-stream Mach number and the thermal condltions at the solid
surface, the effect of these physlcal paremeters on the stability
of laminer boundary-leyer Ilow is readily evaluated.

b. Effect of Free-Stream Mach Number and Thermal Condliions at
Solid Surface on Stability of Leminer Boundary Layer

The distribution of mean veloclty end mean temperature (and
therefore of pg ' across the laminar boundary layer in a viscous

conducbive gas is strongly influenced by the fact that the viscosity

- of a gas increases wilth tho tempersture. ( For most gases, u o i
(m = 0,76 for air) over a fairly wide tempereture rang,e.) When
heat is transferred to the fluid through the solid surface, the -
temporature and viscoslity near the surface both. decrease along the
outward normal, and the fluid near the surface is more retarded by
the viscous shear than the fluld farther out fram the surface - as
compared wilth the 1sothermal Blasius flow. The velocity profile
therefore always possesses & point of inflection (whore W = 0)
when heat 1s added to the fluid through the solid surface, provided
there ig no greseuzs gradient in the direction of the main flow.
Sinc w—— -E IS e— e W______'T' . -6—'- dw
nce 3y (pdy T e y, the guanbtity pr P

dw :
and pa-&- has an extremum at some point in the fluid, On the other

vanlshes

hend, if heat is withdrawn from the fluid through the solid sur-

face, g—;i- and -gﬁ- aro both positive near the surface and the
¥y

fluid near the surface is less retarded than the Ffluild farther .
TS
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out -~ as compared with the Blasius flow. The velocit‘y profile is
therefore more convex near the surface than the Blasius profils.

-As pointed out in section 1l of reference 8, the influence
of the varisble viscosity on the behavior of the produc'b of the

densi 'by and the vorticlity pd—; can be geen divectly from the equa-

tions of motion for the mean flow., When there is no pressure
gradient in the directlon of the main flow, the flui d acceleration
vanlehes at the solid swrface, or

( [ (*au*] 0- | - (6.1}
oy* oy* ) ; .

a:_t;d.

/ 2u* 1 r w* m ® It
2] T T T= =-=(=)({=) 2
Thus, when heat is added to the fll;.id through the solid surface

. aeu-k . ) . - .
(‘l‘l < O) s -—-—5 is positive, and the veloclty vrofile is concave

i . : -
" mear the surface and possesses a point of inflection Por some value
. : - WY~y
of w> 0; when heat is withdrewn fram the £luid <Tl' > o), ot )
. . . g ot i . \ ue
1

is negative, and the velocity profile is more convex near the surface
than the Blasius profile.

The behavior of the quantity L owF
| ' . T* 3y
P

parallel to that of g—-—é- From egquation (6. 2) In nondimensional
y—\l. .

form,

k7
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FELEEL-SFew e

Differentiating the dynemic eguations once and making use of the

2

a
energy equation glves the following expression for [—-—-; (—-—)]
1

(appendix D):

2 s 3. () 2
& ..Y..) = o(m + 1)(y - 1)Mo (wl) e 2(m + 1)2 Wy ( L) (6.4)
a2 \T L T13

<

' 2 o
Thus, for zero pressure gradient, [S‘-—- (L>] is always positive.

*

. ' R ' s
Now, if the surface is insulated,the quantity E:}(%)] vanishes,
a° fu & /w w! :
but ——-—(—-—- >0 and —- (-—- and < both increage with
ay \T /4 ay \T ST .

-t ' t
digtance from the solld surface. Since -;—r- >0 far from the solid

' . . !
. surface, %L has a maximum and %; TE- vanishes for soms value
of W >0, If heat is added to the fluld through the solid sur-
d [w! .
face (’I‘l' < O), E;(-E-—) is already positive at the sur_face, and

6.2 w! a [
gince |jee—— | = >0, the quantity Ey- —'1-‘-) vanishes at a point
. T / - '

ay?

in the fluid which is farther from the surface than for an insulated
boundary at the same Mach number (figs. 3(a) and (b)}. Conse-
guently, the value of ¢ = s for which the function .
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Te 2 '
(1 - 2)v(e) = - =(1l - 20) b S 4 (l] reaches the
TLolwy¥ e \e /]
value 0.580 is larger than the value for the insulabed surface.

By equationt (5.8),. the effect of adding heat to the fluld through

the solid swrface is to reduce Rp orpy end to destablilizZe the
n

flow, as compared with the flow over an insulated surface at the
same Mach number (fig. 6).

If heat is’ ﬁthdram from the fiuld through the solid surface,
?
T,'>'0 and [%y— (%"-)] 18 negative, In fact, if the rate of heat
ok 1

. . I w' *
trangfer is sufficiently large, the quantity %;(F) doeg not

venish within the boundary layer (fig. 3(b)). The value of ¢ = ¢,

for which the function (1 - 2A)v(e) reaches the valuwe 0.580 is
emaller than for an insulated surface at the same Mach number, end
by equation (5.8), the effect of withdrawing hea’t from the fluid
through the sclid surface iz to increase :Rec]_1 and to steblilize

the flow, as compared with the flow over an insulated surface at
the same Mach number (fig. 6). When the velocity of the free stream -
at the "edge" of the boundary layer 1s supersonic, the laminar
boundary leyer-is completely staebilized if the rate at which heat

is withdrawn through the solid surface reaches or exceeds a critical
value that depends only on the Mach mumber, the Reymolds number,

and. the properties of the gas. The ceritical rate of heat transfer:

1 .
is that for which the quantity %(-ff"-.) 18 sufficiently large

negatively near the surface (see equation (6.3)) so that

(1 - 2)v(c) = 0.580 wvhon ¢ = Gy =1 -~ Illi_ (sections 4 and 5).
5 .

Although detailed stability calculations for supersonic flow over

a noninsulated surface have not been carried out, the function

(1 - 2&)v(c) has been computed for noninsulated surfaces at

M°;= 1., 1.5G, 2,00, 3,00, and 5.00 by a rapid approximate method

(appendix C). The corresponding estimated values of Ro.. were

calculated from equation (5.8), and in figure T these values are
plotted against T,, the ratlo of surface temperature (deg abs.)

to free-stream temperature (deg abs.). At any glven Mach number
kg
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greater than uwmity the valus of Ry Poin increases rapidly

1.
ag co-—-)l - %—; when ¢y differs only slightly from 1 - TR
0 0
the stabllity of the laminar boundary layer is oxtremely sensitive
to thermal conditions at the solid surface. At each value of M, > 1,

there is a critical value of the temporsture ratio Tlcr for

vhich Rg , ~—o. If Ty STy , the lamlnar boundary layor is
min - Texr
stable at all Reynolds numbore. The differeonce bebwoen the
stagnation-tomperature ratio and the critical-swrface-tempoerature
ratio, which 1s related to the heat-transfer coefficlent, is plotted
againgt Mach numbor in figurs 8, Under froc-flight conditions, for
Mach numbors greater than some critical Mach mumber that dopends
largely on the altitude, the velue of Ty - Tlcr is within the

order of magnitude of the differenco betweon stagnation temperature
and suwrface temperature that actually exists bocauso of heat radia-
tion from the surface (references 1l and 15), In other words, the
critlcal rate of heat withdrawal froam the fluid for laminar ata-
bility is within tho order of magnitude of the calculated rate of
heat conduction thrcugh the solid surface which ‘balances the hoat
radiatéd from the surface under equilibrium conditions. Tho calcula~
tionsg in eppendix E show that this critical Mach nuwber is approxi-~-
mately 3 at 50,000 Ffeet altitude and approximately 2 at

100,000 feet altitude. Thus, for M, >3 (approx.) at 50,000 feet

altitude and M, > 2 (approx.) at 100,000 feet altitude, the

laminer boundary-layer flow for thermal equilibdriwm is completely -
s'ﬁ;‘bla.in the absence of an adverse pressure gredient in the frec’
gorean., ;. - . ) : .- . N :

When there is actually no heat conduction through the solid
surface, the limit of stability of the laminer boundary layer
depends only on “the free-stream Mach nuwber, that is, on the extent

. —_— SE\2
of the "aerodynamic heating" (of the order of uy* (S-E‘: near
_ AN
the golid guwrface. A good indicabion of the influsnce of tho Ffres-

stream Mach nmnber on the distribution of p:—-—; acrogs the boundary

layer for an insulatoud surface is obtained fram & rough estimate

of the location of the, point at which 4 pg'--; roaches a positive .

_ dy
a2 dw
meximum (or --y-é— pd-; vanishes), Differcntiating the dynamic
. é '
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equations of mean motion twice and making use of the energy and
conbinuity equetions yields the following result for an insulated

surface:

(6.5)

vhere b = 8

ac Sw | - 6. w! |
of ¢ at which ——.f{--) vanishes, or —|{-——] reaches a maximm,
a2\ B A

iz given roughly for alr by -

Wt[dg' w)] | R
1 o 2 2 .
g e T/l M .

- & =1 . ‘ (6.6)
R
& \T /], B |

~

b{0.3320)

= (appendix B).’ In other words, ths point
1

in which wl' =

1 : .
in the fluild at which -g'-y—(%—-) attaine a maximm moves farther out

from the surface as the Mach number is increased - at least in the
range O S M, £ 4.5 (approx.); therefore the valus of ¢ for

; )
which —:’-}-( %—) vanishes and the valus of ¢ = Cq for which

(1 - 2A)v(e) reaches the value 0.580.both increase vith the Mach
number (fig. 3(a)). By equation (5.8), the value of Recrmi for
n

the laminer boundary-layer flow over an insulated surface decroases
as the Mach number increases and the flow is Gestabillzed, as com-.
pared with the Blasius flow (fig. 5).
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- ¢. Results of Detalled Stability Calculations for
Insulated and Noninsulated Surfaces

From the results of the detalled stability calculations for
several repregsentative cases {figs. & to 8), a guantitative
estimate can be made of the effect of free-stream Mach number
and thermal conditions at the solid swurface on the stabllity of
laminer boundary-layer flow. For the insulated surface, the value
of Rg is 92 vhen M_ = 1.30 as compared with a value

crmin Q . o
of 150 for the Blasius flow. For the noninsulated surface
at M, = 0.70, the value of Recrnﬂ_n is 63 vhen Ty = 1.25 (heat

added to fluid), Recrmin = 126 vhen Ty = 1,10 (inswlated sur-
face), and 'Recrm_[ = 5150 when T, = 0.70 (heat withdrawn from
Xfe]

fluid), Since Ryx = 2.251292, - (the value of 6

is proportiomal to the skin-friction coefficlont, differs only
‘glightly from the Blasius valus off 0,.6667) the effect of the thermel
conditiong at the solid surlface on Rx* is oven nore pronounced.

The valus of Ryx 18 60 x 10° when T; = 0.70 and M, = 0.70,

8 compared with a value of 51 X 103" for the Blebius flow
6 Ty =1 and M, = O). For the insulated surface the value

of Rx*cr declines from the Blasgius value for M, =0 toa
min
value of 19 x 103 at M, = 1.30. The extreme sensitivity of the

l:!mi:b of stabllity of the laminar bound'ar; layer to thermal condi-
tions at the solid swrface whon Ty <1 1s accounted for by tho

Tact that c, is small whon Ty <1 and My <1 (or M, is not
' 1 .
much groator than unity) and Recrmin' s:—E (equat?.on (5.?)).
o _

Small changes in c,, therefore, produce large changos in Ry orgn’

. : , n
In addition, vhen T; < 1, small changes in tho thermal conditilons

. +1

at the solid surface prcduce appreciable changes in —% (%—) (equa-~

tion (6.3)) and, theroforeé, in tho value of Cor

Not only 1s the value of Rgp orpy aPfoctod by the thormal
n
condltions at the solid surface and by the free-strsam Mach number
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but the entire curve of ag agalnst Ry for the neutral dis- )

turbances 18 also affected. (See Tigs. 4(k) and 4(1).) When the
surface is insulated. (end M, # 0), or heat 1s added to the fluid ‘

(Tl = 1.25), gg—>¢g # O as Rg—> o along the upper branch of

the curve of neutral stability. In other words, there is a finite
range of unstable wave lengthse oven In the limiting case of an
infinite Reynolds number (inviseid fluid). EHowever, a-—>0

as Rg—> o for the Blasius flow, or when heat is withdrawn from

the fluld,  This behevior is in complete agreement with the results
obtained .in section 4 and in reference 8.

A comparison between the curves of dg against Rg for
Ty =1.25 and T; = 0.70 at M, = 0.70 shows'that withdrawing

heat from the fluid not only stabilizes the flow by increasing Rg o
; / : n

but also greatly roduces the range of unstable wave numbers (ag)

On the other hand, ‘the addition of heat to the fluid through the
solid surface greatly increases the range of unstable wave numbers,

It should also bo noted that for given values of o, o,
and Ry the time frequencies of the boundary-layer dlsturbances

in the high-speed flow of a gas are considerably greater than the
frequencles of the familiar Tollmien waves observed in low-speed
flow. The actuel time freguency n¥* expressod nondimensionslly
is as follows: ' '

n¥ .'(_J;T" cag
(E;?)E ) 2Ry

For glven valuos of ¢, Og , and Rg the frequency increases as
the square of the froe-stream velocity.

d. Instability of Laminar Boundary Layer and
Transition to Turbulent Flow

Tho valuo of Rgo, obtained from bthe stability analysis
n . .

for a given lamipar boundary-lsyer flow is tho valuo of the Reynolds
number at which solf-exclted disturbances flist appear in the
boundary layer. As Prandtl' (reforence 12) carefully pointed out,
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these initlal distwrbances are not turbulence, in any sense, dbub
slowly growing oscilletions, The value of the Reynolds number at
vhich boundary-layer dilsturbances propagated along the surface will
be amplified to a sufficlent extent to cause turbulence must be
larger than Rg CTadn in any case; for the insuwlated flat-plate

flow at low speeds and with no pressure é:a.dient, the transition
Reynolds number Rg t 18 found to be three to. seven times as

large as the valus of Rg Tt (references 6 and 7). The vé,lue
) : 1
of Rg £ depends not only on Rg,,, but also on the initia

magnitude of the disturbances with the most "dangerous" frequencies
(those with greatest amplification), on the rate of amplification
of these disturbances, and on the physical procese (as yet wnknown)
by vhich the quesi-stationary leminar flow la finslly destroyed

by the amplified osclllations. (BSee, for oxample, references 16
and 17.) The results of the stability snalysis novertheless pormit
certaln general statements to be made concerning the effect of
freo~stream Mach nuuber and thermal conditions abt the solid surface
on transition. The basis for these statemonts is sumarized as
follows: '

(1) In many problems of technical interest in aeronautics the
level of freeo-stream turbulence (magnitude of initial disturbances)
is sufficiently low so that the origin of transition is always to
be found in the instablility of the laminar boundary layor, In
other worde, the value of Recz‘min 1s an absolubte lower limit for

trangition,

(2) The effect of the free-stresm Mach mummbor and tho thermal
condltions at the solid surface on the stability limit (Recrmi )
n

:Es overvhelming. For example, for M, = 0.70, the value of Rec
vhen T3 = 0,70 (hoat withdrawn from fluld) is more then 80 times
as groat as the valuo of Ry, whon Ty = 1,25 (heat added to
fluid).

(3) The maximum rate of emplification of the self-oxcitoed
boundary-layer dlsturbances propagated along tho swrface varios _
roughly ag 1’ o) Tmin’ - (This approximation agrees closely with

the numerical results obtalned by Pretsch (reoftronco 18) for tho
cago of ‘an lncompressible fluid.) The.effect of withdrawing heat
from the fluid, for oxample, is not only to incroaso Rg c and
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stabilize the flow in that manner dbut also to dscrease the Initial
rate of amplification of the unstable dlsturbances. In other words,
for a given level of free-gtream turbulence, the interval .
between the first appearance of golf~excited disturbances

and the onget of trunsition is expected to be much longer for a
relatively stable flow, for which Rac is large, then for a

relatively unstable flow, for which Rg Cr;nﬁ.n ) 15 small and tue
Initial rate of amplification is large.

On the basis of these observations, transition is delayeé.- (Rg tr

increased) by withdrawing heat from the fluid through the solid
surface asnd 1s advanced by adding heat to the fluid through the
solid surface, as compared with the insulated surface at the same
Mach number, For the insulebed surface, transition occurs earlier
a3 the Mach number is incressed, as compared with the flat-plate
flow at very low Mach numbors. When the froo-stresm veloclty at
the edge of the boundary layer is supersonic, transition never -
occurs if the rate of heat withdrawal from the fluid through the
solid surface reaches or oxcsceds a critical value that dopends
only. on the Mach number (section 6b and figs. 7 and 8). '

A comparison botwoon the results of the presont snalysis and
measuremonte of transition is possible only whon the Prec-stream
Pressure gradient is zoro or 18 held fixed whilo the Frec-stream .
Mach mumbor or the thormal conditions at the solid surface are
varled. Liepmamn apd:Fila (reforonce 19) have measured the move-
ment of the transition point on a flat platu at a very low free-
stream veloclty when heet ils applisd to the surface, Thoy found
by moans of the hot-wire ansmometer that thr doclined

from 5 % 10° for the insulated surface to & valuo of approxi-
matsly 2 X 105. for T4 = 1.36 when'the_ lovel of free-stream
b

turbulence - was 0.17 percent, or %o a value of 3 X 102
et 2 ) ' .
(ﬁo*
oe——.n 2 ' * .
vhen , j{a¥¥)= = 0.05 percent and Ty = 1,40, Tho valus of Rg
) . ﬂ 2 T . ] . tr

L Q .
declines from 470 (approx.) to 300 (approx.) in tho first case and
to 365 in tho second, : ' '

Frick and McCullough (reference 20) cbserved the veristion in
the transition Reymolds number when heat ig applied to the upper
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surface of an NACA 65,2-016 airfoll at the nose section alone, at

the sectlon Just shead of the minimvm pressure stetbion, and for

the entire leminar run., When heat is applied only to the nose

section, the transitlion Reynolds number (determined by total-pressure-

tube measurements) was practically wnchanged. Near the nose,

Rg << Ry . and the strong favorable pressure gradient in the
Crmin - :

region of the stagnation point stebilizes the laminar boundary layer

to such an extent that the 'addition of heat 4o the fluid has anly

a negligible effect. When heat 1ls applied,however,to the section

Just ghead of the minimum pressure point, where the pressure

gredients are moderate, the transition Reynolds number Rg tr

declined to a value of 1190 for Ty ~ 1.1k, - compared with a value

of 1600 for the insulated surface. When heat 1s applied to the
entire leminar run, Ry i declined to a value of 1070 for T = 1.1k,

It would be interesting to Ilnvestigate experimentally the
stabllizing effect of a withdrawal of heat from the fluid at super-
sonic velocities. AL any rate, on the basis of the results obtained
in the experimental investigations of tho effoct of heating on.
transition at low speods, the results of the stability analysis
glve the proper direction of this effect.

7. Stability of the Leminar Boundsry-Layer Flow of a Gas with a .
Pressure Gradlent in the Direction of the Fres Stream

For the caso of an incomprossible fluld, Pretech (reference 9)
has shown thet even with a prossure gradient in the direction of
the freo stroem, tho local mesn-velocity distribution across the
boundary layor completely deotermines the stabilify characteristics
of the local laminar boundary-layer flow at large Reynclds nwrbers.
From physical considerations this statoment should apply alsc to
the compressible fluld, provided only the stability of the flow -
in the boundary layor is consideored and nok the possible inter-
action of the boundeary layer and the main “external flow, Further
study is required to settle this question.

If only the local mean velocity-temporature distribution across
the boundery layer i1s found to be significant for laminap atadlility
in a compressible fluld, the criteorions cbtainod in the prosent
peper and in roference 8 are theh immediatoly applicable 4o laminar
boundary-layer gas flows in which there is a froe-stream proegsure
gradiont. The quantitative offect of a pressure gradicnt on laminar
stabllity could be readily determined by means of the approximate
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estimate of Rg . (equation (5.7)), in terms of the distribution

of the quantity pc%'r across the boundary lsyer. Such calculations

(wnpublished) have alreoady been cerried out by Dr. C, C. ILin of

Brown University for the incompressible fluid by means of the

approximate estimate of Rgy - given in reference 5, part III.
Crmin

In any event, the qualitative effect of a free-phtream pressure
gradient on the local dlstribution of pi—-;-_r across the towndary

layer 1s evidently the same in a compressible fiuwild as in an incom-
Pressible fluid. If the effect of the local pressure gradient alone
is considered, the velocity distribution across the boundary layer
is "fuller" or more convex for accelerated than for wniform flow,
and conversely, less convex for decelerated flow. Thus, from the
results of the present paper the effect of a negative pressure
gradient on the laminar boundary-layer flow of gas le stabilizing,
go far as the local mosn velocity-temperature distribution is con-
corned, while a positlve pressure gradient is destabilizing.  For
the incompressible fluid, this fact is woll osbablishced by the
Raylelgh-Tollmlen criterion {reference 3), the work of Helsenberg
(roference 1) and Lin (reference 5), and a mass of detailed cal-
culations of etability limits from the curves of o against R
for the neutral disturbances. These calculations were recently
carried out by several German investigators for a comprehensive
serles of pressure gradient profiles, (Seo, for examplé, refer-
onces 9 and 21.)

Scme idea of the rolative influence on leminar stabllity of
the thermal conditions at tha solld swrface and the froo-stresm
Pressurc gradient is obtained from the equations of mean motion.
At the surface, . - ' : :

N i W N - S
B (‘a@l“[s;@ %L?‘u&” =N

or

d dw m+l-.; 1 58 dug¥
sleg) == mw - (1.2)
dy \ dy 2 171 mtl =

1 T 7 ~
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g2 gt
In a reglon of small or moderate pressure gradients| |— S
Vo* dx

say) the distridbution of pg is sensitive to the thermal conditions

at the solid surface. TFor exsmple, the chordwlse position of the
point of iInstability of the laminar bouhdary layer on an airfoll
with & flat pressure distributlon is expscted to be strongly influ-
enced by heat conduction through the surface. (See reference 20.)
For the insulated surface, the égquations of mean motion yleld the
following relation (appendix D) , which does not involve the preassure
gradient explicitly: ' :

3

4% /ey ' 1)

Bl 6.‘1 =olm+ 1) (7 - 1)M02-(--—-— >0 (7.3)
5-3’2 \ 4y L T:_l,e

The effect of "aerodynemic heating" at the surface opposes the
- effect of a favoreble pressuire gradient so far as the distribution

of p%E across the boundery layer ls concexrned ( equations (7.2)
¥y

and (7.3)).. The relative quantitative influence of these two effects

on laminar stability can only be settled by actual calculations of

the laminar boundary-layer flow in a compressible fluld with a free-

stream pressure gradient. A method for the calculation of such -

flows over an inswlated surface is given in reference 22,

. When the local free-stream velocity at the edge of the boundary
layer is supersonic, a nogative pressure gradient can have a declsive
effect on laminar stability. The local laminar boundery-layexr flow
over an insulated surface, for example, is expacted to be completely
stable when the magnitude of the local negative pressure gradient
reaches or exceeds & critical value that deponds only on the local
Mach number and the properties of the ges. The critical magnitude

of the pressure gradient is that which makes the quantity :_3; pg'-}

sufficlently large negatively near the surface so that

? 2 N\
S O [P K | P
L‘l (w')3dy ’ w=C

1
whon ¢ = 1 = —-,

M
o
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Tt has already been shown in the present paper that vhen M, >3

(approx.) the lsminar boundary-layer flow with a uniform free-stream
velocity 1s completely stable under free-flight conditions when the
golid surface is in thermal equilibriwm, that is, when the heat
conducted from the fluld to the surface balances the heat radiated
from the surface (section 6b). The laminer boundary-layer flow

for thermal equilibriim should be completely stable for Mo > Ms 3

pay, where Mg< 3 1f there.is a negative pressure gradlent in

the direction of the free stresm. Favorable pressure gradlents
exist over the forward part of sherp-nosed airfoils and bodies of
revolutlon moving at supersonic veloclities, and the limits of gta-
bility (Recr ) of the laminar boundary layer should be cal-

culated in such cases.
CONCLUSIONS

From a study of the stability of the laminay boundery layer
in a compressible fluid, the following concluslons were reached:

1. In the compressible fluid as in the incompressible fluid,
the influence of viscosity on the leminar boundary-layer flow of
a gag 1s destabilizing at very large Reynolds numbers. If the
free-stream velocity is subsonic, any laminar boundary-layer flow
of gas is unstable at sufficiently high Reynolds numbors.

2, Regardless of the free~stream Mach number, if the product of

the mean density and the mean vorticity has an extremum % p%

venighes | for some value of w> 1 - T {(vhero w 1s the rabio of

moan velocity component parallel to theosurface to the free-stream
velocity, and where M, is the free-stream Mach number) the flow

is mumsteble at sufficlently high Reynolds mubers.

3. The actual limit of stabllity of laminar boundary-layer flow,
or the minirmum critical Reynolds number Ry ; 18 determined
Crmin
largely by the distribution of the product of the mean density and
the mean vorticlty across the boundary layer. An approximate
estimate of P'ecr . 18 obtained that serves as a criterion for
. min
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the influence of free-stream Mach nimber and thermal conditions at
the solid swrface on laminar etability., TFor zero pressure gradient,
this estimate reads as follows: .

6 [E
Tlcl‘\ll-.me(l-c 2
(] (o] O)

'whex;e T 1is the ratio of temperature at a point within the boundery
leyer to free-stream temperature, Ty 1s the ratio of temperatwre

at the so0lid surface to the free~stream velocity, and c, is the

valus of c¢ (the ratio of phase velocity of disturbance to the free-
gtrean velocity) for which (1.- 2A)v = 0.580. The functions v(c)
and. Mc) are defined as follows:

w() QB’D
Ok %63

®min

il

’

U
@)l

c,

2e)

wvhere

n nondimensional distance from surface

4, On the basis of the stability criterion in conclusion 3 and
a study of the equations of mean motion, the effect of adding heat
to the fluld through the solid surface is %o reduce Re and to
Tmin
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destabilize the flow, as compared with the flow over an insulated
surface at the -same Mack number. Withdrawing heat through the
solid surface has exactly the opposite effect. The value of Rec v
Tor the laminar boundary-layer flow over an insulated surface decreases
ag the Mach number increases, and the flow is destabllized, as com-
pared with the Blaslius flow at low speeds.

5. ¥When the free-stream velocity is supersonic, the laminsr
boundary layer is completely stabilized if the rate at which heat
ig witndrawn from the fluid through the solid surface reaches or
exceeds a certain critical value. The critlcal rate of heat transfer,

' ' d dw
for which Ry, . —»e, 1is that whioch makes the quantity = <pd—;

sufficiently large negatively near the surface so that )

[_l - 27\.(0_)] v(e) = 0.580 when .¢ = coo= 1 T Calculations for
. ' . ’ re)

several supersonic Mach numbers between 1,30 and 5.00 show that

for Mo >3 (appr_ox.) The critical rate of heat withdrawal for

laminer stebility ie within the order of magnitude of the calculated
rate of heat conduction through the solid swface that balances the -
heat radlated from the surface under free-flight conditions.
Thus, for M, >3 (approx,) the laminar boundary-layer flow

for thermal equilibrium is completely stable at all Reynolds numbers
in the absence of a positive (adverse) pressure gradient in the
direction of tho free siream.

6. Detailed calculations of the curves of wave mumber (inverse
wave lengbth) against Reynolds mumber for the neubral boundary-layer
disturbances for 10 representative cases of insulated and non-
insulated surfaces show that also at subsonlc speeds the guantitative
effoct on stability of the thermal condltions at the solid surface
is very large, For example, at & Mach number of 0,70, the value
of Rg is 63 whon T, = 1.25 (heat added o fluid), Rg.. =126
CTypin 1 CPpin
vhen T, = 1.10 (insulated surface), and Rgcrmin = 5150 .When Ty =0.70

{(hoat. withdrawn from fluwid). Since Rx* x 2.25R92_, the effect
on RI,e is even greater. . '
Crmin

7. The results of the analysis of thp'stability of leminer i
boundary-layer flow by the linoarized method of small perturbations
must be applied with cars to predictions of transition, which isg a
ponlinear phenomenon of & different order, Withdrawing heat from the
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fluid through the solid surface, however, not only increases Rg

Crmin
but decreases the initial rate of amplification of the self-excited
disturbances, whick is roughly proportional o 1 orys 3 addition

n

of heat to the fluid through the solid surface has the opposlte
effect, Thus, it can be concluded that (a) transition is delayed
(Rg o increased.) by withdrawing heat from the fluid and advanced by

adding heat to the fluid through the solid swrface, as compared with
the insulated swurface at the same Mach number, {b) for the insulated
surface, transition occurs earlier as the Mach mmber is increased,
(c) when the free stream velocity is supersonic, transition never
occurs iFf the rate of heat withdrewal from the fluid through the
solld surface reaches or exceeds the critical valus for which
Ry . s (See conclusion 5.) '

min

Unlike laminar instability, transition to turbulent flow in
the boundary layer is not a purely local phenomenon but depends on
the previous hisbtory of the flow. The quantitative effect of thermal
conditions &t the golid surface on transition depends on the existing
preseure gradient in the direction of the free stream, on the part
of the solid surface to which heat is applied, and so forth, as
well as on the 1nitial magnitudc of the disturbances (level of free-
stream turbulence). . '

A comparison between conclusion 7(a), based on the rosults of
the stability analysis, and experimental investigations of the
effect of surface heating on transition at low speeds shows that
the results of the present paper glve the proper direction of this
effect. :

'8, The resulte of tho present study of laminar stablllity can
be extended to include laminar boundary-layer flows of a gas In
vhich there is a pressure gradient in the dlrection of the freo -
stream. Although further study 1s requirod, it is presumed that
only the local mean velocity-temperature disbtribution determines
the stability of the local boundary-layer flow, 'If that should
bo the case, the effect of a pressure gradlent on laminar stabllity
covld be eamily calculated through its effect on the local distri-
bution of the product of mean density and mean vortieity across '
the boundary layer. : - '

When the frees-stream velocity at the "edge™ of the boundery
layor is supersonic, by analogy with the stablilizing effect of a
withdrawel of heat from the fluid, 1t is expected that the laminar
boundary-layer flow ia compleotely stable at all Reynolds numbers
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when the negative (favorable) pressure gradlent reaches or exceeds
a certain critical value thet depends only on the Mach number and
the proporties of the gas. The leminer boundary-layer flow over a
surface in thermal equilibrimm should be completely stable for

Mo_ >Ms’ say, where Mgz < 3 if there is a negative pressure

gradient in the direction of the free streamn,

Langley Memorial Aeronautical Lsboratory
Nationel Advisory Committee for Aeronautics
Langley Field, Va., September 5, 1946
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APPENDIX A
CALCULATION OF TNTEGRALS APPEARING IN THE INVISCID SOLUTLIONS

Tn order to calculate the limits of stabillty of the laminar
boundary layer from reletions (2.21) to (2.29) between the valuee
of phase velocity, wave number, and Reynolds nwiber, it is first
necessary to calculate the values of the integrals Kl, El, Ho,

Ny, M3 s N3 , and so forth, which eppear in tho expressioms for
the inviscid solutions @ (y) and oy(y) and thelr derivatives

at the edge of the bowndary layer. These lmtegrals are as follows
(equaticns (2.13), (2.9), and (2.10)):

Yo o
H (e) - .(.‘.’__T:_G_Ldy

TEA)

REE . Moe(w - ¢c)@

K (C) ES
1
-(w _ 0)2
Iy
Y,
2 T - Moz(w - c)E v (v - c)2
Na(c) =KH) - K = = dy d.ya-—He(c)
¥ (v - o) Y. !
1 1
fiYo

-
(- 0)2_ f T M- c)? iy qu (v - c)2 iy

i dy (v~ c)2 T

M3(C) = H'EEI" H3 =J
J1

I
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Ni(e) = KyHp - Kg

7 N
2 -MOE(W-— c)2 T (w-c)? 2mp -MOE(W- c)?
= d‘v
- 2 - T ~r - 2
-Jyl (w C) Jl ¥ (W c)
and so forth.

Terms of higher order then a5 in the scries expressions
for ¢y &and @, are neglected. Wien « < 1, the error involved
n

o
1s small because the terms in the series decline llke - Tven

nl
for a > 1, however, this approxrimation is Justifled, at least for
the values of ¢ +that appear in the stabllity cslowlations for
the 10 representative cases seolected in tho present papor. For
example, the leading term in R.P. Npy.,(c), vhere Xk =2,3.. .,

i 3 k-1

‘18 spproximately -% [aﬁf—-s:! miltiplied by the leading term
! - c

in R.P. 1\T3(c). The quantity in the brackets 1s at most 0.12 in

the present calculations; for example, R.P. 1\15(c) = 0.06 R.P. .13?3(0).

Moreover, R.P. Nek(c) = (1 -~ ¢) R,P. N2k+l(c)‘ Similar spproximste

relations exlst between R.P. Mp(c) and R.P. I-%(c); and, in
3 . :
- c
addition, R.P. Ms(c) =z (1 - ¢c) -G——R_.P. N3(c) = 0.015 R.P. N3(c)_.
at most.

The only inbtegral for which the imaginary pert is calculated
is Kl( c). At the end of this appendix, it is shown that the conw

tribubtions of the imaginary parts of Hy, M3, and. I\T3 ara
negligible in comparison with the contribution of I.P. K;(c).

Goneral Plan of Calculation

The method of calculation adopted must take lntc accowmbt the

fact that the value of %5_ (p%) at the point ¥ = For vhore W= c,
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strongly influences the stability of the laminar boundary layer,
Accordingly, the integrals are broken into two parts; for example,

73 ’ ' 1Yo '
T oy | T a7 - u 2
y, (-0 Jyy (¥ -0

I

K, (¢)

Kyq(c) + Epple) - M2

a
where ¥y > y,- The integral K;1(c), which involves (.&}. ,{L)]
=

is calculated very accurately, wheresas- Klg(c) is calculated by a
more approximate method as follows:

Jo
T
X = LA (1)
12(6) T3 .(w - 0)® v

This integral is evaluated as a power.ssesriesa iIn c¢. The
velocity profile w(y) is approximated by a parabolic arc plus a
straight-line segment for purposes of integration. In the more
complex Integrals Hy, M3, and N3, the indefinlite Inte-

K4 T ik T '
grals dy and —5 dy are evaluated by 21 .
v, (v - c)e (w-~c)
J : 7

or 41 point numericael integration by means of Simmpson's rule. The
values of w(y) are read from the velocity profiles of figures 1
and 2, The value of yy -y =a is 0.40 in the present series of

calculations; this value 1s chosen so that the polnt y = yJ is
- never too cloge to the singularity at y = V- Take

"‘YJ . . :
£,(e) = | —E gy (2)
+ Jry (w-c)® '

66
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Ny
T -

The integral Kll(c), or ‘the indefinite integral —(a--—--s-r— oy
W~ e
(1

that sppears in Hy, M3, and, 1\73 ; 1s evaluated by expanding the

integrand in a Taylor's series in y - y, &and then integrating the

gseries %term by term. The path of integration must be taken below
the point y = y, in the complex ¥-plene.

Tnstead of calculating the valuss of the velocity and btempera-
ture derivatives wc(r'l) and Tc(n> directly, it is simpler to relate

these derivatives to thelr values at the surfaco by Teylor's:series
of the form

(n+2)
wG(n) - Wl(n) - (n+ 3.) (yc _ yl) + (y . yl>2 ...

The derivatives at the surface wl(n) and Tl(n) ere calculated
from the equations of mean motion (appendixz B).

The integral K,,(c), for exsmple, is finally obtained as a
power series in y, - ¥; = 0 and in .y.j -¥,=a -0, plus terms

involving log 0. The phasge veloclty c¢ 1is related to o Ly

where

(k)
Wy
he= —+

1

Terms up to the order of a’ are retained in order o include all

terms involving W vii
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Detailed Calculations

In order to illustrate the method, tho evalusbion of Kl(c)
is given in some detail,as followss

(1) BEvaluation eof Xy (c):

T
Kl(c) = J —. 2 - }IO
7y (v - ¢c)
(a} Define
s
T
Kll(c) = e Gy
Uy (w ---c:,)_2
Now
T T
2 PR
(w- )= (v (r - .fc)“dze
where
w o w 't
(5) =1 2 G
Yly) = +§%T(f YO) 3.,w,<3’ Jc)-l---

The Twnction -—T-é- isg developed in a Taylor's sories arouwnd tho

volnt " w= ¢ as follows:

>y_y <4’2 (}’ - yc) + _....> (Y - S’c o
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where
Wy =1
W.cl!
© T oyt
c
(x) c(k+l)
Yo =
(k + L)w !
Then
1 d(y Yo - Y)E
s [T A e
(e1)? Jyy-v, (-7 e Ve
and

KH(C)—(*»Tl)2 [ " } +<‘_> ln\yl-"}— <“>' (77 7)

1 T LI
+E<?2> (ARSI CRESHE

1 p \(lo+l) _ X K
TG [(%-yc)-(yl-yc)]*---}
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where
~in
Yy =T, = |y1 - Yol
Yy == (7 ‘-71')'(3’3'?”1)"'&"’
G =V, - Yl
2 \(K)
The coefficlents <—é are expressed In terms of derivatives
14
of T and w at ¥y = yl as followa:
Define
k
1 1 TV
£2,(¥) = : _<-f- . k22
(- 1) & (w)2\¥2
T
£(y) = - 5
(w')
o - () -2 ()
-t ()2 \W2 (w3 ay \r
Then

k
g 3 = 1 ....T...
k( 0) (wc,)e(k - 1)kt (1!;2) yc
£y '(7y)

=@t ) (e ) T (e ) e

TO
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¢ 7.! '?.-“

(The methdd ad.opted. ‘for 'bhe “baiculation of £ (=) (yl) from the

velocity end temperaturs derivatives Wy () and T (3) is given
at the end of this appendix.)

From the expression for Kll( c),

I.P. K {c) = I.P. Kl(c)
= :tfl(yc) | .
= { (yl) + o'f (yl\ R (yl)]
and
R.P 1 o g? 5
P. Ky (0) +wl'c=co+°l°'+°2° + .. ¥ o0
CIPoKp{e) Sy - 1
b -1n< - >+a_d Eo(yl)
okf (L) hEY
+af(')’<yl)+-. N k'(..2.+..‘
é
720 |
where
C=¥, "7
£ (k+l)(y)
TS TETD T T M fo(72) 0L%¥L5 (55.= 0)

8, = af'a(yl) + aEfB(yl + a3fh( yl) * auf5(yl> + a5f6(yl> oo .

T



NACA TN No. 1360
8 = ai‘a'(yl) + 5%3'(;;1) + 'a3fh:'(yl) + ahf,i'(yl) ..

- [Eaf3(yl) + 3a2fl+(yl)_ + ha.3f5<yl) + 5ah'f6(yl') . ]

8 =-:- [éfa"(yl) + aefa"(yl) + a.3f,+"(yl) + -. .. ..]
- [Eafs’(yl) + 38"21‘1:,'('71) + ha3f5'(yl_) + .. .]

+ [3afh(yl) + 6325'5(;«1) + lOa3f6(yl> .. ]

s, - .2. [afa'_”(yl) va2e () J -2 [Eaf3"(yl) 3628, (7,) + ]
+ [3&1‘4'@1)4- 6a2§'5'.(y1) + . ] - [ hafs(yl) + 10a2f6(y1) + ]

1

5, = % [afeiv(yl)... ]-—% [Qafé“'(‘yl)"' ]+%‘- [3afh"(yl)+ ]
- [’-tafs'(yl) + ] + [5af6(yl) + _]

- Ar+1
Gy = - - =
k I\é-(r_'_l),dlc--r 5'o 1.0
o ()
IAk= Wl. g = O.’+O

T2
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(b) Define

¥
2 by

(v - c)®

Eyple} =
vy 3

11,0

i

d(y yl)

Jo.no (¥ - C)e

[z2d

k
= :>: ak(k+l)c

. k=0

where

1.0 o

a = s & y - y
k : 1
: 0.ko w2 )

The veloclty profile w(y) ie approximated by a parabolic arc
in the interval 0.4W0L y =~ 1< ¥z - Ty and by a straight line
= = i 5 - - .0,
(‘w Constant w(y3)) in the inferval y, - ¥y Ly-3 g0
The valus of 73 is detexrmined by imposing the condition thet the

aree under the parabolic-arc straight-line seument sguals the area
under the actual velocity profile w(y) :in the inbterval

0.0 y - y; £ 1.0, The parabolic arc w=1 + m(y - yl) + n(j - yl)a
is determined by the following cohditions:

vhen y =y, <1,

n
[

W
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wvhen ¥y =y, &nd Yy~ Ty = 0.h0,

v = ()

where w(yd) ie read off the velocity profile of figures 1 and 2.

The value of y), 1s chosen so that the parabolic arc fite the
velocity curve w(y) closely over the widest possible rxange.

For ¢ = 1,

- 7 -1l .2 y -1 .22
T—Tl"[(Tl"l)"—'-a’*—-Mo W - 2 MOW

Therefore

2= T (Tgua * T) - [(Ti ](Ikul + 1) - m"* # (T + T

where

r - L‘y“ Yl d(:y‘ - ¥

and

L[ -y R CRED)
sy [ ) &7(3’3)]1:

Th
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Ik is evaluated by approximating w(y) by a parabolic src as
followss '

To-¥
+m o+ Y -y
- ¢ -n) 0.10
I-- 1 m+2n(y~yl) J3Y1 _ex-3 h(-n) ]
(k-1)A [+m(y y1)+n(y Fl)]k-l Tox-p a F1

vhere A = - 4in.
As a control in the calculation of the series expression

Z a, (ler1) & for ;. »(c), 1se is made of the fact that, from

k=0
the definition of Ik and J’k,

kd_}@(x +J> w"’J>

L“’("’ 3) j Feal”

and therefors

]"m (al:+l 1 X
k3o \ 8% - w(yJ_) X+ 1
The remainder after N=- terms in the series for Kle(c) is given

apyroximately by

[
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[(-H + 1) term]

)

The real part of Kl(c) is obtained by combining the results
of (a) and (b); that is, _

- . 2
R.P. K;(c) = R.P. |Ky4(c) + wl'c + K._Lg(c) - M,

(2) Evaluation of Hy(c):

The Integrand of this integral is free of singularitles in the
reogion of the complex y-plane bownded by ¥y = 7y and ¥y = Vol -

therefore H.(c) 1is evaluated. by purely numerical integration. The
actual proce&ure employed for the calculatlon of integrals of thls
type iz as follows: (The integral Hl(c) gerved as8 an illustra-

tion,)
(2) Define
b b b
E.(c) = = pw"':' an - 2¢ pw 8n + 2 g a
. 1 “p n - 1 N
' 0 0 1118]

where
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and

o
%
uO

b= sV_____
v ¥ x*

(b} With the approximstion that the viscosity variles linearly with
- the absolute temperature, the velocity w 1s the same function of
the nondimensional stream function { as in the Blasius flow; that

is, :

v W:(ﬁ)i-wa(é) Il

where § 1s defined by the relation d&f = pw dn . (appendix B).

From these relations

ov an = E‘{E)]n-l af —_- EJEB('QB)]IL dng
" since 4&f = wy dng. Moreover,

at ._
ow(t) - *() e

dn =

where

() = Ty - [(Tl -1 -2 5 - 302] vy - s = 1 P

for o =1,
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(c) Finally, from the relatians given in (D),

b b, _
1 ° 9 2
EFl(c) =% . vy dng - 2¢ ) W dng c/

. for the Blasiune flow. ZFor

where b, is the value of B\j—-
v ¥ x¥

the insulated surfaces, b, vwhich is somevhet arbitrary, wes
chosen as 5.60; whereas for the nonimsulated surfaces, b, = 6.00,
(The value of wy at 7 = 5.60 is 0.9950; vhen ng = 6.00,

wg = 0.9975. The value of b for the insulsted surfaces is the

value of n at vhich w = 0.9950; whereas b for the noninsulated
surfaces is the value of v for which 1-7.=_b0.99'_'{'5.) The advantage

o ,
of this procedure ias that the integrals an d’qB are calculated

. 10
once and for all.and the value of H;(c) depends only upon the

values of b and c. In fact,

= b - 2.3967

since

== 1.730

and
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Also,

W dng = by - 1.730

b bo

- Y -1l 2
b, + 1.73(T; - 1) + 0.6667 =N,

- -1
b, + 1.73 [(Tl - 1) - 'LE.}MOE} + 2.3967 .Lé_.__.M 2

[

.See appendix B, (Incidentally, the last relation shows the effect
of free-stream Mach number and thermal conditions at the solid
surface on the "thicimess" of the boundary layer.)

{(3) Evaluatioﬁ of Hg(c):

Jo T . 20 _ )2 ¥y -3
H2(°)= Mo (VT " c) (w - c) iy
¥y (w - c) by .
¥2 Y _ 2 Yo [ 2
‘ } T - a5 {w-c) dy-M02 (wr-c) &y dy
vy (w-c) v, T vry dyy T



NACA TN No. 1360

Define
Yo P 2
By (o) = | . —2 o (w- o) o
yl (w - C) yl T
Jo T )
H, (c) = =0 oy oy
% T
{ yl yl

(a) The integral ng(c) is evaluated by methods similar to those
already outlined for the evaluation of Hl( c). Thus

T
ML

(2N _ Py .Y ¥
I dy | evdy-2¢ | dy | pv Ay + c° & | e ay
UL vl yiL o ¢ ' Uy 1

o (o)

1 by B o ' by, B 5 Dy
== T d.nB Wy dng - 2c T dng Wy dng+ ¢ Tng dng
0 0

vhere

T=T [(Tl-l)--...___M ]“.B“ lMoe_sze

The nine Integrals in the expression for 'Hga(c) are svaluated by
nvmerical lntegration using Simpson’s rulse.
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(b) Define

2 ¥ 5
B (c) = T ey | -e
7, (¥ - c)? ¥y T ..

1 1

J ¥y J. ¥
J q _a)2 2 w_ )2
___f T dy[ (w-c) dy"'f T dyf (w-c) ay
T (w-c)2 vy T yJ (w-c)2 yi T

Define

oy

R 7 dyry Ew—c)a

m
1 e

tT2 : J )
T (w -~ o)<
() - f o f R

3 1

The integral Hele(c) is evaluated as follows:

‘ye iy o
ey | L=l

yd ('W' - 0)2 .yl T

T Y I K7

f 2 g iy 2 (w-c)? dy - 2 = ay 2 (W-—c)2

Ty (w-c)2 y1 i ¥ (s-c)? v T

81
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Bub
Y2 N
‘f _,___,?___....2. 4y = K'.LE.(C)
v (w - ¢)
J
and
L] 2 |
f G- 9 ay - gy (o)
T
i
80 that
5r2 | :572 2
T (W - c)
} . s &y
210t Gl Bl f (v - 02 ¥ L T
73 :
Define

In P
P(C) - ....-.—---——--E G(.V'; G) a-y
s (w - ¢}

b T

1

et s &{n; c)an
b2 LO.L!-b ('W - c)h
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where

G(n; c) =

I
5

and,

. [(T -l)--——-—-—-M ]w-z—;—-}moewz

The integral P(c) is evaluated by numericel integration using
Simpson's rule; the required valuea of w eare read directly off
the velocity profiles of figures 1 and 2. Finally,

Hpy p(6) = Kya(e) Ey(e) - B(o)

The integral HEJ_-L(C) is evaluated in exactly the same way
as Kj;(c) where '

(w - c)e o 2
ST

'W' tre

-y)*3w’(y’ y)

83
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R,P,. |H (c (ba +ca + d.e +na5)
21

3+d.la1’t-2ab-.3ac 1!~a3d.-,;an)

+ c@-,a + cla
2f 2 3 2 3 1 2 3
+ o 6’2& + Cu87 - 2aby - 3a Gy - T dl --§-+ 3ac, + 6a d.0+lOa no>

+ 0'3(1:3&12 - 2aby - 33202' + 3ac, + 6aed;L + Dy - 2L&d.o - 1052n0 + a3>

+0'(2ab +3acg+pl-lbed.l+o +5ano+all>

\n

+a

[ [_' qb' h3f;>(wc')2] 1. o3 ST () 1 Ty
. - - ————s o —— E R, - c—en
| Pa " 36 a8 -0 |3 - 3 fo(yl) 4 G T,

. ln(a-c)é fl@@ u 191 ()% '(3’1); 1 21(7y) é_g_)_g_ £1(n)

]
3 fo (yl)

GV R X X Y

where

8k
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'b3 (—1}- + """ ( )2 3f§y(;z‘) .

f2(71)
R (’71)

s fe(.fl)f (vl) 1 fé(yl) ) _____>~ 1 faf(yl)
P ReF e\

3£ (srl)
co=-;——-f-§253 m< '> o

1 23(7) [fo'(yl)]z 15 500 | 1 20

TP RE [ | IR ) B )
e
5D e T )]
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l_l
!6!"’

fo (Yl) 1 f2(3’1) £! (VJ.) 2,2 A . , 7L
AR OEORE [ 3 2“2 T,

N ERET 6]
S8k RS

)

P = e A2 - wm———
o4 )_‘_ Tl

[~ 111 1 " alb
P _.._._i. AM -E}.____+3Tl E}_ . l' 3
2 gi{e T —— T
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TB: oLt T" T12 Paorre
1 1 1
S I DU 3_,,%2( )
ol 2 3 P T Ty Ty

SRR O

"5 F (yl) 20 fo(yl)
1 fiFy) B2 o 1’ | Y
- — —— —— EA ——— ma———amr.
Iy |2 T3 ETl oz
Ll Ty’ B ) 2<T1'>2 "
- 2 + ———— - —————
EER KRS By ) F AT ) T T
Tlt 1t m i li M, ¢ 3
T Ty J\Ty T,
2
h3f0 (‘WC ') 1 C’l'>(3 ) . Al;. (Tl' 2 Tlﬂ
— = B | =B, +2A,) + — + 3A_ |2 — ]} - o
2 3 2
36 36 13\% /\2 2 Ty ' T,




—%w)

ey

= Ayg - Bofy

! - b - gy
= A" - Ay - BAYALT -
9Ahgf Attt - 38,181
= Ak+l(m) .- Ak(m+l‘) .
=HE .
=@£§
=%%72+Z?§;

= As“*nj

5A§%}ﬁ§£‘
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_ EﬁkiG

2 k<5

A“ 2L L,
BAQA-L - A" My k=23

iv

iv’AQA’k LnAz'A "'-6{\. A’k IFA'E'“A']SZ _Ae A'k Ko 2

o ®
AN IA
3y

B
A A

= o
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Byo = Ay
Finally,

R.P. By(c) = R.2. By (e} +Hy () - M P, (o)

(k) Evalué’cion of M3A(c):

Yo'\ 42 9o : COPT 2
M3(c>=f EL‘T“‘C“)”@J <'T 2~M°2>avf oo &y
1 . (v - ¢) 1 T

Mo(c) = Mgy (o) - M Fyp(e)

vhere
y . Yy : .
2 2 2 , - 2
M3l(c) = ‘}1 g.?.’..é_cl_ dy J' : _,__,T 5 ay [ (V c) ay
1 ¥ {(w - ¢} 71 T
and
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(a) The integral M32(c) is evaluated in much the same way
as Hee(c); that 1s,

b b
) o \p
- e
b5 (c) = Wy dng r Twy dng dng
0 g LY
b - Dy fing ibg, b, nnp o
- 2¢ L dnp TwB dnB d.nB+ W diyg Twy~ dng d.'qB
0 ¢Np U0 0 _ ¢ Vo
. bo by Ang . bo . by, -
+ c dng Tug dng dnp+ W= dng Tng dng
Vo - Y 0 Ui:}

+

bO bo T}B \ 3 / bo . bo
bl vy dng Tvg dng dng; - 20 v dng | Tig dng
) ing do / - g

by b, g L by bo
d:qB Ty d.nB d.nB +c dnB TnB dnB
Y0 B 0 ' vo 1B

where b, bas the same meaning as in the evaluation of }122(_0)
and where

+

Pon) - (oY) TR - Ly

90
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The integrals in M32'(c) are evaluated by numerical integration

using Simpson's rule. Values of Wy are taken from the table in
appendix B. e o

(b) For convenience, the integral M3l(c) is ‘transformed as
follows: : -

M3l(c) = M'3;,_l(c) + M312(c) ~ 14313(0)

where
y 'y Ny
S - c)@ J 2
Mg, (o) —f | (WT 2 L S & (v - 0" 45
71 y (v-o0 by T
My (o) = --——-—-—-(Wé ) ay I ey -y
71 vy (w-o)®  fy, T
. 2 o 5 J o)
My () = g—‘i-T?-ﬁ)-m Ty | oo g
3 F.;j FJ (v - 0)2 J1 T
It is recognized that
¥, ’
2 N2
(w'; C) ay = Hl(C)
: yl
Ye ¥ o
T .
dy (w - o) Ay = (c)
5 Hy
7y (w - ¢) dJri T 12
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Therefore
Mgy () = By} Hp (o)
By additional transformations, the following equatlons are obtained:

13,,(0) = E () (o) - a(e)

where
1R 2 5 Io 2 -
ale) = “‘"T' o) ay | e dy E,‘i.:_?_). ay
Ty . ¥y {(w - c) ¥ T
or
b n ' b
. 2 2
Q(c) =.];_ .(.ji..;f.)__dn ..-.._E._...-.-. dn M—.d
v Joup T do.ud (w - ¢)2 1 T

The integral Q(c) 1is evaluated by numerical integration
using Simpson'’s rule; P(c) is evalumted in the calculation
of Ee‘?(C). ’

The integral Méll(c) is obtained in exactly the same way

as Kyy(c) and Hgll(c);__that is,
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3
—+c—-2c:2—-+o"+—a->

2.0 - s 53

1 fl\yl)
3f (y1)< + o8 +Ga>[a-o‘) fo(yl)ln(a-c)]

Finally, -
R.P. M3(c5 = R.2. 1-1311_-(c) + (o) _Ezalefc) - P(c)] +Q(0) - MM (c)
(5) Fvalustion of Na(c)s |

V7,

7 2 2
N3led = [ — - Mo] f fr- o) o z -Moa]dy
dyy, Lw - e)® oy 7 y Lw-e)?

. fte 2 T2
Ny(e) = SR R CPR LY A T
yp (w-o2 |y T

[eali
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. Tt can be shown that the second and third integrals are identical;
therefore . . o

Wy(c) = Ny (e) - 2M P p (o) + i MO

wvhere
To y R o Jo
N3l(c) = ._.....T..........é dy .(_?."'._.'...f.?.... dy .._?._..._. 8y
dry (v -c) v T g (w-c)2
5';2 : J o
- T (w - ¢)

Nap(0) = Nagle) = ——— 5 (v - §) —

Ji (w - ) 5§y T

Yo g (v - o)2
Ny, () = | (- 7)W
yl' ¥ .

(a) The integral N3l{_( c) is evaluated by numerical integration
in.a mamner similar to Hy(c), Eps(c), end Myo(c); that is,
| Bt

¥

3"2 ¥y 2
(v - c)2
J1 . - J
N D on . b b 0n fib b Nn
D esase T 5 2
b3 dn| ow" dn| dn-2cf dn! pwdn| dn+c dn | pdn

0 i ' ¢n

ol
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A LI P, b, "B P,
I\T3h(c) =..--5 | Tdng| Vg dngl T dnp-2¢| Tdng g dng| T dng
b \do o " ym 0 G o
5 b B bs
+ C T dnB d.'qB T B.'n_B
0 o B
where
2
e .

The integrels in N ,_P(c) are evaluated by numerical integration
© in a mepner similar to that used in the evaluation of M32( ¢c), and

go Porth. Most of the integrals will already have been evaluated
in the calculation of Hl(c), Hyn(c), and M32(c)

{b) For convenience, 1\1'32(0) is broken dowm as follows.

T2 T 7 (w )2
Nyp(e) = —_— —— (35 - 7) &
(v - ¢)?
1 T1
73 T | y.(w-- 0)2 T2 y(w- 0)2
e e | | e
I w- ¢ 1 J (W-C)z yl T
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Let
N32(c) = N321(c) + N322(c) - N323(c) _

where

72 T e {(w ~ ¢)
N (c) = dy . - -
325" ‘Lﬁ (v - ¢)2 L T A
Now, - . _ —
V2 . pre 2
(w - ¢}
30 () = £ (w'f Y- ay r T2 [(‘/‘2 - Yl) (y - yl)]dy
J uy
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it is found that

I‘I323(c) = P(c) - Pl(c)

where
ye yg ol .
Pl(C) = w}-——-ﬂ- (w - C) (Y - yl) d'y
yj (v - c)2 T
1 ® T
== e Gy (3 c}én
. 1802
b3 o (¥ - &2
and.

h2 b . b a
W w 2 n an
{n; ¢} = —7n dn - 2¢ —n dn + C e
Gylns bl pn et =

g Ty ) il

'.Pl( c) 1is evaluated by nuwmerical integration using Simpson's rule.
Deline ’

Yo Yo Cu

I CRoREI

T1
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and

Ip 2
(w - c)
——-.‘-r-——-—-—- dy = El(c)

Iy

it is recognized that

(c) = Kyple) |By (o) - (“’ -

M3, (v -7) %

¥

Yo 2 b N b u
(W- ) (y yl)d,y—-—-- p(w - c)edn‘ﬂ dn =-];é- p(w2 - 20W+ cz)d.-qf &

J1. . 0 b 0

J2 s Rz} R} B
(w-c)? 1 2
0 0

b

5 g B
+ C dnB T d'qB
o 0
_ o
The integral M—— (y - yl) is evaluated by numerical
y1

integration in exactly the same wey as N%(c) .
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The integral N32 (c) 1is transformed as follows:
1

73 T 7 (% - o) e
N32 (c) = ———-—-2'dy T {(3"2 "_Yc)’(ﬁ"bc)]dy
:.L iy ('W' - C) ¢ . - i
N 1 ¢J1 ,
But
I 7 2
L ay | (w; o) dy = Hp, . (c)
yl (W - 0)2 T .-L
) and
: | Vo= (Fp-T) - T, -7)=1-0
580 that |
Nap (e} = (1 - 0)Ep (o) - 3y, (c)
where

¥ - T - )2
lel(c) = 5 i (y - yc) dy
yp (¥ -c) dvn T

The integral Jell( c) 1s evaluated in the seme way as Kll(c). Thus
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R.P. Jp, (o) = = T - l:%l: v o? <_ ki po>]
6-o\f fa(m)_ l fl(Fl) ih (1) #1(71)% (Yl)
N P <5 R iocm )

g — +aC -a5D +c[-i;—-l+a0 +a(5ZDo+C)]

12

+ 02 (% + 6&2(30- lOaa'Do- ha3cj>' +—c3 .i_L; - haco + lOaZDO + 6a203>"

£.(7 . '
L 4 a 2(1) = 5( 5
" ‘}EP"*'Efovl'hacl")aD" U\

'cl-_-_} v m(rn) | Ra(T)e "(v1)
> 8 (yl) Eokyl)]a

L b £1(71) L1 £2(71)
6

%o = +25f(yl‘\ o 20 T(7y)

o)
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Finally
R.P. Wgp(c) = R.P. N321(c) * N322(c) - N323(c)
(c) Define '
To ¥ o W2
N3l(c) = "—E‘"’é dy SE_:_ELdy T - ay
.. {(w-2¢c) ¥y T 7 (w - ¢)

71

After several transformations, . the integral NBl( ¢c) 1s brought
inso e more convenient form

MORE MORENONLMORE MO) BEINO

vhers
T3 T 5 FJ
T (w - ¢) T
N = o Bt —
31, (e) Y- &y - ay P—
L T1 v
T2 v o Y
' N313(G) = -—?—.—; dy ('W - c_)__ dy ....—El——-— dy
FJ'(W'C)" gryg T 73 (w - c)?

The integral Njy (c) is evaluated by numerical inbegration
3

using Simpoon's rule. Somse of the integrations have already been
porformed., The integral is glven as

b
1 o 5 [ (o - c)? E P
w3 Jo.up (¥ - &) 0.4 (v - )2

0.4b
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The integral N3ll( ¢) is evaluated in exactly the same vay .
as K;q(c); that 1is, ) d |

Ng1,(e) = (a

+ 2.8,(7) - % fé"(yl)] } - [inta - 0)]% - 2,.._._....__:('-’:(’? ;)"). A

2 31k 1
6 © 3"1) -8 :3: pofo('vl) * —9_ fl(yl)] *

e

- {a‘* 6 S5 2 ) 3 |- 5]
s P { Z2,(n) + %‘zf'fé"(yl) a[" %'(7) + Poo(Ta) * 3 fl(yl)]

+ a2E+3a }“’ E ("1)’ S %" (7)- % 2(1)- g %" (7)- B(EJ'F)]
. 0“[(131 - 3),(1) * PFo" (1) - %fon(yl)]>

' o
+ In (a-0) [Bmc+2-3fl(yl 3%011(-”1)"“; Lil_g%%l} 2,

8" a a3 2 1 fl 71
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+ ¥ )+ — Y -2 2. (5, )+ aD-a {p £ (7 1[fl(yl)]
<3 () * 3 s 1(1) 1(1) “ Jl: 1(1) : 5.0 }

+%a9+0‘ [ 2.(r)-3 l(l)-iig(%gig-— "(3,) - a(;:+c)}
ot E‘: fl"(;y'l) - pofl?(y;_) + (qo - Pl)fl(yl}]]
30,608 e L 1) m e 052 (L)

- - 5 k (yl). °
- hfo(yl)'po] + (a "- 0)3 {'lg £o(71) + %‘ré fl(”'l)f’o 3 %{ %_(}:)']-

- 12 O(yl) } fe.- q)% 3 & (yl} hpy (yl) hPofo (yl)_!

2
_ _g__ (a - c)fa(yl) - -2- (a - 0)2 :Ln.(a - c)fl(?fl)

- - (a 0')20':5‘ (;y‘l) in (a- o)+ (a-0)3 1n (a- ){ E——l(yl)]

2o (72)
_laC To(¥2) @ [ (=) hf(“’l)" "“;L'fl(yl)]
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’-'. | {h e Vs 1'(3’1) ‘%E’ofl'(yl)“ Plf;(yl)] ”75; q'ofo(yl)+i- T2(71)
- i (_Z_l.._._.ﬁé })+ in (a :’.. ) [.. :ffl(yl) o3 {fl & l) ; [ff}g yilz‘]e

. .;‘_ ' l(yl)po} - .L‘ <‘“ ' (3; )+ ;{afl(il)(:) =2 E 1 (yl)] 't }

1 E(yl)fl(yl) Po E"l(y.w.)[a\
i) ()

e El(y )Py +Befy (ylﬂ )ty

where

3

A= fl(:’;l) vet {53: (7)) - POfl(yl)]

"o Efln(‘?l) A CORCN Pl)fl(y]ﬁ
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e g o o)
ST

< oo B ST 48

Ll nfnE) 1 Fa) , Bl }
s Bel e BF

BT, -2 20050

=P ‘fo(y]_) 7 (yl)
s () )2 22 L e

E=pf, (71) + p:Lfo(‘*"l) * ';:' £,'(F)

F=p.f1(n) + 45o(¥1) - fe(y 1)

" Evaluation of i'k(m)

The functions fk(m) (yl , which appear repeatedly in the
evaluation of the integrals Kj(c), Hs(c), and so forth, are

evaluated in terms of w (¥) and T,(K) as follows:
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w6 g,

Tk 5’,3-' ‘w 7\2(1: 1) k! K\VE)] = (.Yl\ pfk (yl)a +

fo(m)(yl) _ ’__(Tgo)yl(m) -- [Tl(m)so . nﬂ.‘l(m’l) g+ m(m 1) Tl(-’n-a)gg —

(m jn;) tp! Tl(m_r)ng” Tlfh] ogmgé
where |
1
& = 6:;-5‘2 _
& = —EEOA*B

BT ~2<@0A2' + EIAQ)

(m-2)

g = -2 Lger(m-l) ‘m - ek

. (m-r—l)

+ . . g.._.,____._________g
(m_r) rv rAQ

E Epah 2]
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1 .
fl(m)("' 1)= <'8°+ % 31T>yl(m) - (&) :rl(m) "2 (Elm)yl('m) PERE?

RO -E ), M 2 (e, @ 08a gy
J1 Iy
where
Loy fm) _ L )
= (Tgosz)yl m) _ = [fo(yl)32]y1 (m
and.
CERCHR e

B Eraeivy) @ e,
SRed @ esas

I1
fl;(m) ( yl) _ _%._é (I;ivgo+ ot gl)}/‘l(z:a) . i_z, Tngose)yl(m) N %—_é (T' 3053) {(m)

1 | .
7[5 1>Sh]y o camas
1
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L v. 5 iv (m) Ny (m}, I ¢gn (m)
f5'(m)- (yl> =350 I g + > &T )y *iB T ﬁosz)yl * I[é@ 8083)..)',l
l .=

|

2 S L (m)
e, @ - Pl T osne
(S‘l)-- 600('1‘1 g +3‘.T.'1 gl)-i & <’+O 1 S, + 5 Uy '”83+E|—.0 Tl"Sh_ R

1 1 :
* %o 1'% T 360 T186>

¢7]
——
5
i
B
—
=5
L)
(@]
[Av)
L ame
>
-
H
o j
[
-~
B
(@]
VAN
B
IA
(83

K 2, (k) 15 _ (k) (%)
g (B _ g 3Bu'(k? - 1203(1‘) + 2D, - 2 0Lrge

- 20(;6(1{) - 5OD3(k) - _1_2"_5__ E () 0<k é__l

...I.\)
l
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2 15
56='?A7+3B6+6Blo"18054'1;"39'6038"'751)4

ko 315
'Ak(m) and, Bk(m) are defined ae pre‘t'iously .

cg(k) - 33(1c) _%_ Ba(k+l)

Ky 1 f, (k) k'

0™ - z @s AN +l)>
o0 L9 5 (9 g (k;.-..)>
> 2\ 6 10 5

C6(1c) _ 38(-5) 1 B’?(I-Hl)

2

T 7
Cg = Aphghy
(x) () 1. (k1)
Dz C3 7 - 3 Ce i
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p,( L (202(1«:) ‘o9 c3(1:+1)>
szk)%‘(zca(m - o5t -'Cu(k+l)>

», L <208(k) co,® cé(k+l>>

{x) p () _ 1 ()

E2 = Dy 2

|

(¥) 1 (k) (x) ktl)
B &“(3”5 D, - D, >

() ()

{1+1)

£
52 -

Order of Magnitude of Imaginery Parte of Integrals Hy, M3, end N3

In the detalled stability calculstbions the contribubions of—
the Imaginary parts of the inbtegrals HE’ MS’ I\T_3, and so forth,

to the function v(c) are considered to be nezilgible in corparison
with the contribubion of the imaginary part of %(c) . A caleuwlation

of the orders of masnitude of I.P. Hp(c), I.P. M3(c), and I.P. N3(c)

from the general expressions given in the preceding pages shows that
this step is Justified, at least Ffor the values of phasge velocity ¢
that appesr in the stability calculations.

For example,

I.P. Byle) = T.B. Hy (o) “A(“c')efl(yc\)

jao
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where

Therefors

3
~ ki c
I.P. EE(C) = - ':'3' l(yc) T—_l—(-w_l_'j

The contribution of I.P. He(c) to v(c¢) is epproximately equal
3

¢ w'c.
e Wiere v, = —— L.P. KZ_L(c). The quentity in

o2
o Py r 1 ?
3 ‘I‘l( i ) 3
the brackets 1s of the order of 0.03, at most, in the calculations
of the present paper. (In the upproximate caleulations of 'Recr
min
for Mach numbers veyy much greater thau uwnlty, ¢ bscomes larze

te v

because ¢ > 1 - —3: howsver, o 1s small when ¢ i1s not nmuch
o
1
greater than 1 - — eand the results of the calculations of Rg
- My Crmin
: W ic
based on the approximation v(c¢) = . I.P. Kl(c) are qualitatively
1
correct (fig. 7).)
@ |
From the expression for N3(e), I.P. I\I3(c) = I.P. X 1(c),
_ , 1
2(w )
po that the contribution of I.P. N3(c) to v{c) is approximately

2 2
equal. to vy - . The guantity In brackets ls of the order

20"
of 0.06 at the most.
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The imaginary part of M3( ¢) 1is considerably smaller. In
fact,

' ' 6
- 1.2, M) = —

PR

91,12 (wl,)e

I.P, KJ.(C)

and the contribution of I.P. M (c) %o v(e) is approximately
62 o

-cTa” !
sgqual to Vo l'——-—-—-—--—-J The guantlty in vrackebts is of the

2 2
L9Tl (Wl ’)
order of 0.001 at maximwm c.

2
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LPPENDIX B

CATCULATION OF MEAN-VELOGTIY AND MEAN-TEMPERATURE DISTRIBUTION
ACROSS BOUNDARY TAYER AND THE VELOCITY AND, TEMPERATURE
DERIVATIVES AT THE SOLID SURFACE

The mean-velocity and mean-temperature profiles for the several
representative cases of insulated and noninsulated surfaces are
calculated by a rapid approximate mebhod that glives the slope of
the velocity profiles at the surface wlth a maximm errcr of about
4 percent in the extreme came, for which T, = 0.70 and M, = 0.70.

The surface values of the higher velocity derivatives and the
temperature derivatives required in the stability calculations are
obtained directly from the eguations of mean motion in terms of the
calculated value of the slope of the velocity profile. The Prandtl
number is taken as unity.

Mean Velocity.Temperature Distribution across Boundary Layer

In a seminar held at the Cslifornia Institute of Technology
in 1942, the present author has shown that a good first approxi-
wmation to the mean veloclty distribution across the boundary layer
is obteined by assuming that the viscosity varies linearly with
the absolute temperature. With this assumption, the velocity w(f) 1is
.):
the same function of the nondimensional streem fumciion { = __\g
\lﬁ}u}ﬁ

as in the Blaslug case, and the corresponding disbtance from the

r————

surface n = y* —___f_}-_Qf— ig obtainod by a slmple quadraturs when o=1.
: Uo*xx‘ -

Actually, the approximation w({) = wg({) 1s the Ffirst stage of en
lteration process applied to the differentisl oquations of mean

motion in the laminar boundery layer, in which p «TT"¢ (e
paramoter equel to 0.2%F for .air), and w() = W_B(f,) + ewl(g) + eawa(g) +oeus
Calculstion of wl(_f,) Por Ty = 1.50 and T = 2,00 for M, —>0

showed that the iteration process is rapidly convergent 3 the con-
tribution of the socond torm to tlie slope of the velocity profile

is 8 small
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at the surface is 5 percent for 'I‘l.-. 1.50 and 8 percent for Tl= 2.00,

Tn the present calculations ‘the maximum error in the slope introduced
by taking w({)} = wg({) is about % percent in the extreme case.

(See reference 15, in which the suthors make use of a linear
viscoasity-temperature relation. See also refoerence 23.) ‘

Thet w({) == wg({) for a linear variation of viscosity with

abgolute temperature is seen directly from the equations of mean
motion in the laminar boundary layer. The equation of continuity
1s sutomatically satisfled by taking

PR
= W= o ;
po* J*

and :
N
xﬁ:——a\lf—
R

The stream function, Y* and the distanco along the suwrfaco x¥ arec
solected as indepondent variahles followlng the procedurs of von Mises,
and the dynemic equation of mean motion becomes for zero pressure
gradient '

ﬁ@E:if”-;éuj) |
S AN A

Define the nondimensional stream function: { by the relation
{ = —————w—-, The dynamic equation takes tho following form:

o © ' : .

_I§ dW_.d aw
T

Since_ p=— in the boundery layer, 1f p = T, +the dynamic equation in
this form is identical with the equation for the isothermal Blasius

11k
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flow, that is, w({{) = ws{t), or the value of the velocity ratio w
is equal to the Blasius value at the same valus of {. The corre-
[

¥
sponding value of 7 = y* . , the nondimensional Y4issence"
o =
from the surface, 1s obtalned as follows:

oxr
pW-:—a—.:-g-
an
¢ ¢
n"—: ‘E;-—: Tg:.g.
0 oW 0 W

If o =1, the energy and dynam'c equations heve & unigue integral and

K%"l)'L;imﬁw"Z%&%%zf

as shown by Crocco. Therefore,

G

But W(Q)EWB(Q), and

¢

]§—~'l 2: w af
0

=3
I
l-a




NACA TN No. 1360

The integra.ls r vy dnp and f sz dnp &re glven in the
Vo 0

following table, and the mean-velocity and mean-temperature pro-
files can be calculated rapidly by this method, (The valuss

ow ‘. '
of (-—-—-) are uwsed in the approximate calculation of RQ

(eppendix C).)

My : B -
B L) t= W, dng vip© dng
t ;o
0.00 0.0000 0.0000 0.0000 0.3320
.20 .066k .0066 L0003 .3319
.ho .1328 L0265 ,00214 .331%
.60 .1989 L0596 .0081 .3300
.80 .26k7 L1065 .0189 L3274
1,00 .3298 .1660 L0367 .3230
1.20 .3938 .2385 L0620 .3165
1.40 L4563 .3236 .0993 .3079
1.60 L5168 4210 L1468 .2967
1.80 5TUS .5302 v 2064 .2825
2.00 . 6298 .6508 2792 2663
2,20 L6813 7821 .3654 .2483
2.40 7290 .9231 648 .2280
2.60 7725 1.0733 5776 1 .e06k
2.80 8115 - 1.2319 7034 .1835
3.00 8460 1.3978 - ,8h11, ,1618
3.20 8761 1.,5702 .9897 L1408
3.k0 .9018 1.7580 1,478 L1180
3.60 .9233 1.9306 1.3145 .0986
3.80 Lokl 2,1171 1.488kL . 0805
4,00 L9555 2.3067 1.6682 L0640
h.ho | L9759 2,6933 2.0419
k.80 .9878 3.0863 2,4280
5.20 .9gh 3.4828 2,8211
5.60 .9975 3.8812 _ 2.2180
6.00 . 9990 L ,2805 3.6167
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With the approximation that p varies linearly with the
absolute temperature, the slope of the veloclty profils at the
solid surface is simply related to the slope of the Blemsius pro-
file, Thus _ , ‘

ow dwal - daw

i e e O] e

o afag - at

Since v(c)sslvs(g),:

owr 0.332
o/ T .
1

oY

vhere b is the value of 7 at the "edge" of the boundasry layer
(when w reaches an arbitrarily prescribed value close to wnity).

It is seen that tho shear stress at the surface (or the skin friction)
has the same value asg in the Blasius case

T-% = f, ¥ —— = n % u — ~ = ¥ Q u_i.. —_— o f —— = {7 %
A Tl 1 o{éw . o M % L 1
oy* /) on A 3y 3y A B
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The reliability of this spproximatlion can be Judged from the calcula-
tions of the skin-friction coefficient in reference 24, in vhich

T TO'76. From figure 2 of reference 2k, the value of the skin-
friction coefficient for am insulated surface st a Mach nmumber
of 3.0 (Tl - 2.823) is only 12 percent lowsr then the Blasius

value and only 2 percent lower abt-a Mach number of 2.0 ('I.‘l = 1.81).
For the noninsulated surface, with T, = 0,25, the valus of the

skin-friction coefficient at MO = 0 is only 7 percent greater than
the Blasius value and 12 percent greater at a Mach number of 3.00.

Since the shear sbress at the surfzace is unchanged in first
approximation, the boundary-layer momentum thickness has the same
velue ag for the Blasins flow

The expression for the displacement thickness &% gives a measure
of the effect of the thermal conditions at the solid surface and
the free-stream Mach ntmber on the thickness of -the boundary layer.
By definition,

&%,

[ -0« (2 - )]y

= 173+ (7y - 1)1.73 + 22 u %0.6667)

=173 7, « - - - »_%(0.6667)
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For the Blasius Tlow

The .Ythickness" of the boundary layer b is given by

b =5.60 + (T - 1)1.73 + L= n 2(0.6667)
1 (o]

and the form paresmeter H =

LU
2]

For the insulated surface,

H=2.50+3.50(7’1M2>
o [»}

A

Calculation of Mean-Velocity and Mean-Temperature Derivatives
Because of the sensitivity of the stabllity characteristics of

the laminar bhoundary layer to the behavior of the quantity -— (

the values of the req_u:!.red volocity and temperature deri vat.,.ves at
the surface are calculated directly from the squaticone of mean

motion, with u = T° {m = 0.76 fow» air), Now at g

—

= bpw 80

that the dynamic equation is -b ~w' (vaf')

L

Since [(0)= {'(0)=0,
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Y - l' : '
vhere T,' = w' [ (T - 1)] if o = 1. In other
words, ‘the value of wl is readily compubted from the value

of w ', In general, Wl(k)

1 s determined from the i‘elation

-2 ()R < ()t

oxr
w9 ey = Ty g (een) (k-1) (Tm)l (k-2)
. 7, 1 (k-3)!2! pm
T 5
(s) 1)
(k-1)! (Tm)l : (Tm)l(K
W(k"s)+...+—-——-——-——-w’
(k-1-8)s! Tlm 1 | . Tlm 1
b (k- 2) (x-3)
""“"“ﬁl + (k- 2)§ wl+...
zrlm
(k-2)! (k-2-r} (r+1) (k-3)(k-2) , | (x-3)
+(k-2-r).'r.' ¢ " e ed 2 .——gl ¥y
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C]_(p) = b(p‘w) J(-P"‘l>

T o
B 1) o (m - (p-2)
--b Lp W < (P l)pl 'Wl' 4 s & o
(p - 1) -a-1 _
. p(pq)w(q)+._.+pv(pl)
(p-a-1iatl 1 11
D= l, 2_, e o e D
and
o _l
17
[ Tl'
Dl —-;—E
1
2 1"
0" =2(Tl') _Tl
t e3 z?
1 1
1 33 qm_trt
pl'“=6*1*1'_T.E.._ <Tl) 2
ko % 2
1 1
-(’I’m)“ (Tl1)2 .1
SNl = minm - 1) > +
n T
Tl Tl 1
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11t s 3 " . .
(Tm) - = =, (l) + 3m(m - 1) o +mTl”
m 1v G2 b i aI' " '
(T ) = (m, 3) ( - ) + 6(111, 2) ( - ) - +m(m- Y [}_l_TllTll Pt
r® ot o3 r?

Tiv

+3(‘I’ )]+m

(33 )V' (Tl’)s Crl') " " (m, 2) o
S — 22 y i;. — " 4 t wy<
- (m, k) " +10(m, 3) > + — 15T, )(‘I‘l )

-
-1) Ty
+ 10T ¢ 2'l‘ "']-&-—«-—-—m(m-—— 10T _Mqtrr g o5powp iv]-i-m-———

vi (4 N6 T L‘T
@), (m, 5) %%{—ﬂ“ 150, 1y 1) o 3) [1‘5("” PRGN
7,

+ 20(T, '\3'1' '“_] (m, 2)[60'12 T e 15(Ty )P 1V+‘1=(T 3]

T .J
m(m - 1) o, V-
+ — lO(T "’)2 "5’.[‘ Ty iv . gp Tl ] b
7 2 T
1 1
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(m, 2)

(m, n)

(m, 1)
(m, 2)
(m, 3)
(m. ¥)

(m, 5)

where

]

]

fl
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m(m - 1) (m - 2)
m{m - L)(n - 2).' . . (m-n)
0.76
-0,182k
0.226176
-0.50663L
1.641h95

-6.959939

aw. !

yélMoe'(Tl'l)

n 2 2
aw,” - (7 - 1)4, (wl’)
awy'*t - 3(7_- l)Moewl’wl"

o .
&y Ty - l)Mo2 [3(111")2 + b o T ']
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awlv - 5(y - l)Moe(le"wl"' + wl'wliv)

B3
<4
B

V. awlﬂ' - (7 - l)Mo2 E.O(wl"')a + l5wl"1.:r_-_,_:w + 6wl'wlv]

-
1

Each velocity derivative is determined from the knowledge of all the
preceding derivatives.
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APPENDIX C

RAPID APPROXIMATTION TO THE FUNCTION (1 - 2a)v(c) AND THE
MINIMUM CRTITICAL REYNOLDS NUMBER

In section 5, a criterion was derived for the dependence of
the minimum critical Reynolds mumber Rg.., on the local distri-

bution of mean velocity and ftean temperature across the boundary
layesr. It was found that

e

h l-Moe(l-c)

~
~

Cr'min

L
Ty

vhere c¢_ is the value of ¢ for which (1 - 2A)v(c) = 0.580 and

wWe) = - = W;: = dy(..)]
< >1 (1 Bw\

il

— n——

T ( >3 on \I Bn/
-

=C

Ao) = Wl’(yc - Yl) 1
ow
N5
= - - 1
C
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A rapid method for the calculation of the fumction (1 - 2a)v(c)
and the minimum critical. Reynolds number is developed by meking
use of the approximation that the wviscoslty varies linearly with
the absolute temperature {appendix B). (Since the effect of
veriable viscoslity on the mean-veloclty profile is overestimated
in this approximation, the values of Racrmj_n (fig. 6(a)) calcu-

lated by this method are lower than the values calculated for p.='1‘0'76
when heat is added to the fluid through the solid surface and higher
when heat is withdrawn from the fluid.)

For p =T, the dynemic equation (appendix B) ie

NN
2 3n  on \P on

and therefore

T2 3 /1 dvw In2

memrmia v [ e e} 2
dw I \T W

But

or 1/

go that
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where

e
u
+3
=
}
oy
+3
I__l
[}
N
t
~3
L
=
=
1>
1
=
t
}_I
=
o
N
o

T
o

Finally,

1l
t
‘f\’
=]
|
]
O
]
~3
‘...l
=
or\)
e
1
Y
S’
| I—
gy
"

The required values of Wwg, (%Y_) , and { ere obtained from the
n . . R

table 1ln appendlx B.

The small correction to the slope A{(c) 1B easily calculated
once the mean veloclty profile has been obtained (append.ix B).
Thus

e - [ J\,(O) = 0

The quantity (1 - 2A)v(c) has been caleulated as a function
of ¢ Zfor various values of T, at Mo = 0, 0.70, 1.30, 1.50, 2.00,

3.00, and 5.00, and the results of these calculatlions are given in
the following bable. The decisive stebilizing influence of with-
drawing heat from the fluid at supersonic velocities -is illustrated
in figure 7.

127



NACA TN No. 1360

Tl cO Recrm_n Tl cO Rsc&‘min
M, =0 M, = 0.70
0.70 0.1945 3650 0.70 0.1670 8440
.80 .2695 1080 .80 .2390 2110
.90 3485 .| o2 .90 .3265 613
1.25 .5435 67 1.25 5425 s
1.50 L6240 36 1.50 6265 38
M, = 1.30; ¢ >0.231 M, = 1.50; ¢ >0.333
0,90 0.2455 9230 1.30 |} 0.3450 | 2770
1.05 L4075 392 1.35 H585 275
1.20 5170 121 1.k0 .5505 99
1.3422 .5450 92 1.4556 6276 49
1.50 .6355 Lo 1.60 L7732 16
M, = 2.00; c¢ >0.500 M, = 3.00; ¢ > 0.667
1.63 0.5074 671 2,48 0.6730 186
1.65 5438 | 207 2.52 7058 59
1.70 L6155 Vi) 2,62 L7655 ol
1.75 6749 40 2.72 .8105 14
1,81 7275 25 2.77 .8295 10
1.85 () 19 2,8225 .8500 9
My =5.00; ¢ >0.800
5.19 0.8008 17k
5.20 .8036 80
5.30 .8262 23
5.75 .5008 6
6.0625 .9350 3
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I e et ' ., - Tt M prREL) .:-; ..' I
L APPENDIX D

ComoeeeT - -y -

e - T . T - R . e P ot S e A

. 'BENAVICR OF. -g—y G_-%’-- FROM EQUATTONS OF MEAw Moffow -

syt

In order to determine the effect of free-stream Mach number,
thermal conditions at the solid surface, or free-stream pressurs
gradient on laminar sta'biiity, it is necessary to know the relation
between these physical perameters and the distribution of the

guantity op :—; acrbes the bowmdary layer. The value of g-‘- p gl;
' g

at the solid surface is cbtailned directly from the dynamic equation

' : d.2 dw
(equations (6.3) and (7.2)). The value of —— {p = ] abt the
gt \ W

surface, which is aslso useful ln the discussion of laminar sta-
bility, ig obbained from the dynamlc and energy sguations as

Pollowvs:
F(ﬂ £C>
— Y 3 ——— w——
dya dy 532 o .

wy'tr 2'9@_"’1‘1' wl’Tl" Ewi'(Tl’)e

T cnsdte. sen

+
T, 2 . g2
1 T 7, T,3

Differentlating the dynamic equstion once yislds the result

1

. Enﬁ"l"wl" | ‘ - (Tl.)-_z--_ ' 53_'"
= Lo

Ty
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At the solid surface the rate of change of temperature —;’-—-

dp*
ik
both vaenleh, and the rate at which a fluid element loses heat by
conduction equals the rate &t which mechanical energy is transformed
into heat by viscous dissipation. The emergy eguation becomes.

EE @)

and the rate at which. the work is done by Pressure gradient w2

or
: 2
2 (Tl'z
T =gy - 1M (') -n <0
1 ( ) o] (l ) q
1
Utilizing the expression for W't and Tl” glves
2 (1 )3
=-2(m+l)-—-—-— — +o’(l+m)(7 l)M
l
vhere

a [’ m4+ 1 1 82 amg¥
5—5‘ T o 2 Tl'wl, - Lam . % .
1 Tl : Tl L Uyt dx*
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2 t
From this expression for g’-—- i the following con-
ay”\T /1
clusions, which are utilized in the stability analysis, are reached:

2 !
When [ ( W,)] vanishes, the quantity [Z'? (3’.-)] is
T

gt1ll positive.

When the free-stream velocibty is uniform,

2 1 ~ - 3 Tt 2
i—<f—) = o(l + m}(y - l)M°2 (—wl—)— + 2(1 + m)?2 (—L)—wl';
d,y2 T 1 | . 2

T-l P T'l

32 for
that is, J—— -—-) - 1s always positive.
2\
dy 3

When the surface is insulated,
2 C o 3
da w!
"'é’(") = o(1 + m)(y - )M 2 (s )
ay | e, 2

’

4 w!
and [—-—-2- (;-)] is always Posi’cive, regardless of +the pressure .
1 .

gradient.
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APPENDIX E

.CALCULATION OF CRITICAT, MACH NUMBER FOR STABILIZATION
OF LAMINAR BOUNDARY LAYER

For thermal equilibrium the rate of heat conduction fram the
gas to the solid surface balances the rate at which heat -is radlated
Prom the surface., If the rate at which heat ls withdrawn from the
fluid reaches or exceeds a certain critical value at a glven local
supersonic Mach mumber, the laminer boundary-layer flow is stable
at all Reynolds numbers. (See section 6b.) The purpose of the
following brief calculation 1s to determine the equilibrium surface
temperatures at several Mach numbers and compare these btemperatures
with the critical temperstures for laminar stabllity. (See fig. 8.)

When the solid surface is in thermal egqullibrium

| VL, a-]::;e L
F(E) - | o[- o
o} - 1 0

vhere € isg the emissivity, © 1s the Boltzmamn constant, and the
other symbols have already been defined. (See references 1k and 15.)
Consider the case in which the free stream is uniform and the
temperature is constant along the surface., For ¢ = 1,

o) T %
GRS
1 v 1

vhere stagnation temperature T, equals 1 + z ; 1, Moa.
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1‘To")z' 0. 332
LF x*

Also

if the epproximation u =T

is employed.. (See append.ix B.) Since k—f = cpr.*ui ” cpﬁ?'rl,

F(E) -om oo Te )RS
1

When the integrations in equation (1) are carried out, the fol-
lowing relation is obtained for the determination of the equilibrium
surface temperature:

V& (@ - 1) - (7 - 1) Vo

whers
(55)6 2

2 S a——— ——
Cp Po* Ho" \[(7 - Leoglo*

The equlilibrium surface temperabure under free-fligh-b condi-
tions 1s affected principally by the variablion in density Po P * with

altitude h. The results of calculations carried out for albti-
tudes of 50,000 snd 100,000 fest are given in the following tables

K = 2.27

) T .
h M s Tlequil s 7 oy
(£%) o (f1g. 8)
s0x 103 | 3.0 0.370 0.355
100 % 103 2.0 e 185
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In these calculations the followlng data are used: -

€ = 0,50
L=2+F%

T_* = LOO° F abs,
- aa=13 o 4
o = 4,80 x 107 Btu/sec/rt=/(deg F abe,)
e, = 7.73 Btu/slug/deg F abs.

po*' = 3.02 X _ZLO"7 slugs/f.t-sec

g,;; = 980 ft/sec

P ¥ = 3.61 x 107" slugs/rt3 at 50,000 £b

3.31 x 1077 slugs/ft3 at 100,000 £t

K = 3.35 x 10* at 50,000 %
= 3.66 x 1073 at 100,000 %

Since T_. - T S T, T Tor M, » 3 at—50,000 feet
8 lequil 8 Loy (o} ’

altitude end for M, =2 at 100,000 feet altitude, the laminar
boundary layer is completely stable umder these conditions,

It should be noted that under wind-tunnel-test conditions in
‘which the model is stationary, these radiation-conduction effects
are absent, not only because of reradiation from the walls of the
wind tumnel but also because the swrface temperaturos are low -
generally of the order of room temperature.

13
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AUXTLTARY FUNCTIONS FOR CALCULATING THE STABILITY OF TEE LAMINAR

TABLE I

BOUNDARY LAYER FOR INSULATED SURFACE

138

¢ N v L Hy E, M3 n3
My = 0

0.0372 0.0000 0.0bok 0.0102 0.5220 | 0.288¢9 0.0689 0.2999
Lok .0001 .0029 .0285 L4Tu8 .27h0 .060L . 306L
1115 .0003 .0099 L0561 1303 .2590 .0530 .32k
L1486 .0006 .0235 .0940 .3887 .2h33 .0k60 .3161
.1857 .0012 .ok62 L1430 .3499 .2278 .0k03 .3211
.2226 .0021 .0802 .2040 .3139 .2120 .0350 .3230
L2594 .0033 .1284 .2782 .2808 .19558 L0301 .3217
.2960 .0050 .1937 .3670 .2505 1797 .0256 317k
.3323 0071 L2794 el .2232 .1639 ,0217 .3084
.3682 0098 .3896 .5960 .1987 L1487 .0180 .2935
JLo3t .0131 .5286 .7h18 L1770 .1350 .0139 .2708
Lhik3 olke 5767 .790% JA711 .1312 .0125 .2618

M° = 0.50

0.0362 -0.0000 -0.000L -0,0148 0.5122 0.2223 0.0443 0.1927
.0723 -.0000 -.0001 -.023% L4671 .2127 .0ho1 .2086
.1085 .0001 .0029 -.02Lh Lok .2019 .0356 .2193
.14h6 .0003 .0107 -.0169 .3847 ,1904 .0316 .2280
.1806 .0007 .0254 -.0003 3Tk .1789 .0282 .2366
L2166 .001k4 .0ho2 .0260 .3127 L1662 .024g .2h20
. 2525 .0023 L0846 .0627 . 2807 .1530 .0217 .2k25
.2882 .0036 L1342 .1103 .2513 .1390 .0188 .2506
.3237 .0054 .2010 .1695 2246 .12Lh7 .0158 .2333
.3588 L0076 .2882 L2412 L2005 110k .0128 L2479
.3936 .0103 .hooo .3261 L1790 0963 .009L L191k
. LOL37 5407 el .1602 .0055 Jllhk
1306 .0140 .5526 L4327 .1589 0816 L0051 L1397
14362 LOL46 579k h501 .1560 0792 .0038 .1262

M, = 0.70

0.0353 -0.0000 -0.0009 -0.0321 0.5031 0.1839 0.0321 0.1484
.0705 -.0000 -.002k4 -.0590 1599 .1786 ,0300 L1652
.1058 -.0000 -.0025 -.0791 k191 1721 .0279 .1819
1410 .0001 .0006 -.091k .3608 .1652 L0257 .1981
L1762 .000k .0090 -.0951 .34h8 .1569 .0233 .2128
L2111k .0008 .0248 -.0896 .3113 .1478 .0209 .2259
..2h6L .0015 .0501 -.07i .a802 L1379 0187 .2358
.2813 .0026 .0872 -.0k78 .2516 1272 L0165 .2h36
.3161 .0039 .138g -.0098 .2255 L1157 .01h2 L2466
.3505 .0058 .2082 .01z .2018 .10h2 .0118 L2817
.3847 .0081 *.2985 L1067 .1806 .0925 .0085 L2272
1185 .0109 L4137 .1886 .1619 .0813 .0052 .1987
k352 .0126 4821 .2363 .153% .0760 .0030 .1787
k52 L0137 5270 L2674 L1486 L0733 .0016 .1618
4559 .01k9 .5790 .3027 L1436 0709 -.0002 1575
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TABLE I - Concluded
AUXTLIARY FUNCTIONS FOR CALCULATING THE STABILITY OF TEE LAMINAR
BOUNDARY LAYER FOR INSULATED SURFACE - Concluded
c A v L Hl- H2 M3 N3

M. = 0,60
0.0334 0.0000 -0.0015 -0.0503 0.4816 0.1303 0.0180 0.0908
.0667 -,0001 -.00L7 -.0972 R .1298 .0185 L1133
.1001 -.0002 -.0082 -.1380 .hokg 1281 .0185 L1366
.1335 -.0002 -.0102 -.1746 .3696 .1253 .0182 L1504
.1669 -.0001 -.0090 -.2034 .3365 .1213 L0175 .1825
.2002 0001 -.0029 -.2250 .305L L1163 .0166 L2055
.2335 .0006 .0098 -.2387 .2765 .1103 .0157 .2252
.2666 .0012 .0312 -.2hh1 2497 .1030 L0143 .2439
.2697 .0022 L0634 -.2407 L2251 L0oLT .0128 .2597
.3326 L003k .1086 -.2281 .2026 .0855 L0110 .2703
.3652 0051 1697 -.2063 .1823 L0759 .0090 ,267h
.3976 0072 L2496 -.1730 L1641 .0656 .0060 .2515

.hogs 0098 .3518 -.1302 .1480 . .0021 .23

612 0130 L4805 -.0784 .13%0 o4l -.0036 L1431
4636 .0132 he13 -.oqhh .1330 L0463 -.00h0 .1373
4812 .0153 .5788 -, 0h21 1261 .0418 -.0076 .100k

M 1.10
$¢.0990 -0.0003 -0.01%0 -0,2037 0.4026 0.0673 0.0012 0.0806
.1320 ~.000k -.0206 -.2630 .3682 0686 0038 .1068
.1650 -.0005 -.0255 -.3166 ,3358 .0683 L0051 .1319
.1680 -.0004 -.0272 . -.36Lk0 . 3054 L0667 .0058 .1598
.2309 -.0002 -.0232 -.hoko L2770 L0632 0064 -.186k
.2638 .0002 -.0125 -.1k396 2506 .0581 -0062 .2101
.2965 .0009 .0072 -.1680 .2263 .0516 .0058 .2293
.3292 .0018 .0382 -.h906 .2040 .0k31 .00kT7 2416
.3616 0031 .0829 -.5086 .1837 0333 L0031 .24sh
.3938 00k9 I R 11 Y- -.5239 .1655 .0218 .0005 .2310
' ko6 0097 2247 -.5516 1498 .0081 -.0032 .183%
AisT2 0098 .3300 -.5675 1350 -.0060 -.0087 076k
L4836 L0126 ey g - .12k5 -.0203 -.0157 - 0737
.5104 0160 5789 -.6875 L1151 -.0360 -.0230 -.2366

. M, = 1.30
0.2541 -0.0008 -0.0561 -0, 5982 0.2487 0.024L 0.0003 0.2200
.2858 -.0005 -.0505 -.6508 .2255 .0233 .0016 .2hho
L3173 .0001 -.,0364 -.6987 .20kl ,0183 .001k L2644
.3488 .0009 -.0117 -. 7430 .18&5 .0109 .0003 L2Th2
.3800 .0021 .0258 -.7856 L1667 .0019 -.0016 .2700
J11l L0037 L0790 -.8300 L1507 -.0099 -.0048 .2285
kLS 0057 .1508 -.883% .1366 -.0236 -.0090 L1184
7o .0083 .2hkg -.9608 L1242 -.0hoh -.0169 -.0818
.5020 L0111k .3652 -1.0977 1136 -.0628 -.029% -.kol3
.5072 .0120 .3893 -1.133% L1119 -.0671 -.0324 -.5971
5416 0167 STTT -1.307h4 .1020 -.083L -20549 -1.5080

FATTONAL, ADVISORY
COMMITTEE FCGR ARRONAUTICS
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TABIE II
AUXTLIARY TUNCTIONS FOR CALCUIATING TEE STABILITY OF THE
IAMINAR BOUMDARY IAYFR FOR NONINSULATED SURFACE

c A v L Ey H, | Ms 1‘3
M, = 0.70; T; = 0.70
0.0262 0.0056 0.0825 0.063% 0.6102 0.3272 0.052k 0.2748

.0521 0112 .1645 .0949 5725 3157 .0502 <2920
OTTT .0166 2h66 .1184 5367 .3045 L0481 .3081
.1030 .0220 .3297 +1k00 .5026 .2936 0458 .3233
.1281 027k 416 .1632 4703 .2828 Oh33 +3380
1529 «0327 »5023 .1904 1396 2724 0412 .3519
.1701 L0365 .5661 .2130 1191 2651 .0395 .3610
.1726 .0370 ST54 2163 162 .2642 .039h .3623

M, = 0.70; Ty = 0.80

0.0237 0.0033 0.0486 0.0279 0.5954 | 0.2811 0.0493 0.1369
.0hT72 .0066 0965 L0374 . 2737 LOW75 «150h%
.070% .0099 L1543 .0k30 5300 2663 0Us7 .1635
.0937 .0132 L1925 .0L82 o9k 2590 .0k37 .1763
.1168 .016L L2017 . 0220 L7012 251k O0k17 .1882
1397 0197 2926 0649 Jhh20 .2439 .0397 .2001
.162% .0230 .3457 0789 h152 .2363 .0378 .2110
.1851 .0263 k017 .0982 .3897 .2287 .0359 .2213
2075 .0297 61k .1236 3654 .2210 .0339 .2311
2298 .0331 .5253 1562 342k .2133 .032) .2h00
.2Lo9 0349 .5592 754 .3313 L2054 -0310 .2kk3
2475 .0359 5801 L1877 .3248 2071 .0303 2465

M, = 0.70; Ty = 0,90

0.0433 0.0036 0.0517 0.0051 0.5506 0.2%10 0.0L435 0.1426

.0863 0072 .1028 -.004T .4939 230k .Ohoh .1638
.1201 .0108 .1568 -.0111 bl 2191 .0370 .1846
et .01k 2173 -.0079 «3930 20Th .0337 .2032
.2135 .0185 .288% 0096 .3485 21951 .030h «2203
.2351 0227 #3746 .Oh62 .3080 .182% 0272 +2339
.2963 .0274% 11805 «1073 2715 1698 .02k0 2462
3166 .0299 5426 .1489 2547 .1637 022k 2517
.3268 .0312 5762 776 2466 1606 0217 .25kl

0.0346 -0.0016 -0,0237 =0,0L476 0.5100 0.1750 ©0.032k 0.1462

0692 -.0032 -.0k76 -.07T97 | .4678 .1710 .0310 163k
.1040 ~.00L8 -.0698 -.1013 4276 .1661 .0292 «175%
.1389 -.0062 -,0886 -.1132 .3896 .1600 0272 1956
.1738 -.0076 -.1021 -.1155 .3538 1529 0251 2108
.2088 -.0087 -.1085 -.1081 3202 L1448 .0228 .2238
.2l39 -.0095 -.1057 -.0912 .2888 .1354 .0208 .23h2
.2789 -.0101 =.0917 -. 08453 2597 .124kg .018s 2502
«3138 -.0103 -.0641 -.0281 .2330 L1133 .0161 .2509
.3485 -.0100 -.0203 0179 .2086 .1008 .0139 «2297
.3831 -.0092 .0k27 073k .1865 L0870 .0113 2069
Jl17h -.0079 .1286 .1373 .1668 L0728 .0083 .1616
Am12 -.0059 241k .2071 .1k95 .0582 .00h2 .0816
R:1:1N -.0031 3859 L2770 <1345 .ok27 -.0012 -.0601
5092 -.000§ .518% .3212 .1248 .031% -.006T -.2262
.5190 .0006 5TT9 .3349 212 0269 -.0091 -.3028
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. TABLE IXT
PHASE VELOCITY, WAVE NUMBER,AND REYNOLDS NUMBER POR NEUIRAL SUBSONIC

: S N R
¥, = 0
0.0372 00321 25,500,000 0.0038 3,030,000
.OThh . 1,500,000 .00 , 000
. 1103 278,000 L0131 33,100
1486 . 83,000 .0 9,
.1857 2148 32, .0255 3,880
?‘,ﬂ . 14,800 '853“ 1,760
. .3590 7,700 Lou27 917
.2960 5535 5420 5 5
.3323 5707 2,760 0679 329
L3632 7243 1, ,0862 220
o3t . 1,360 Jake 162
b3 1.0770 1, .1282 153
h143 1.2730 1,530 1515 182
4037 1.2940 i, .1540 223
1.1960 3,530 1hoh
3323 1.0h400 6,710 1238 ;gg
. 8728 13,300 .1039 1,
2394 STATT 21,500 .085k 3,270
MO = 0.%0
0.0362 0.0251 35,600,000 0.0029 %, 270,000
.0723 .0538 2,130,000 0063 ,
.1085 .0868 392,000 .0101 45,700
.Aak6 L1250 116,000 L0146 13,500
.1806 L1665 iy, 500 .0158 5,190
L2166 .2216 20,200 0238 2,360
2525 .2829 10, 400 .0330 1,210
. EEEG 5,850 .oblk 682
3237 k2 3,370 .0518 416
.3588 5549 2,330 J06k7 272
3936 .6993 1,620 .0812 153
9301 1,230 .08 b
4106 .9558 1,220 L1k 1hg
4362 1.0140 1,190 1182 139
4362 1.1830 1,510 b
k306 1.2150 1,360 16 184
4280 1.2150 1,660 .1h26 194
26 1.12k0 3,080 L1310 339
3388 .9788 5,670 L1k 661
.3237 82712 10,800 096k 1,
.2882 6869 21,100 .0800 2,460
M, = 6.70
0.0353 0.0191 53,100,000 0.0022 6,100,000
0705 o415 3,060,000 L0047 3h9,000
1058 o677 5%%,000 .007T 63,400
L1410 1,000 .02 18,400
1762 134k 61,100 L0154 ,980
2114 1766 27,300 0202 - 3,120
246l »3,800 1,580
2813 857 7,630 0326 872
3161 3570 4,550 0 520
3505 W33 2,900 0306 331
EBHT 5515 1,960 0630 22k
.ass 6951 1, 0TSk 162
4352 L7917 1,230 050k 11
k52 8655 1,160 0989 132
4559 9T 1,110 1108 127
4559 1.12%0 1,330 .1283 152
uls2 1.1420 1,650 .130L 189
k352 1.1230 1,980 .1283 227
4185 1,0720 2,670 1225 305
, 3847 9381 4,810 1072 550
1505 L7965 8,880 _ .0910 1,010
161 6659 16,700 L0761 1,910

WATTONAL ADVIBORY
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TABLE IIT - Comcluded

1

PHASE VELOCITY,WAVE NIMBER, AND REYNOLDS NUMBER FOR NEUTRAL SUBSONIC DISTURBANCE
(STABILITY LIMITS) FOR INSULATED SURFACE - Concluded

c T .3 I R I oy F Re
MO = 0.90
0.033% 0.0107 111,000,000 0.0012 12,600,000
L0667 .0258 5,960,000 .0028 79,000
1001 oh21 1,030,000 .0048 117,000
1335 0632 000 0072 33,000
186,000 .0101 12,100
2002 1186 46,000 0133 5,240
2335 15k 22,600 0175 2,%
. 1 12,100 0223 i,
259 7,020 0280
3326 3053 L, 320 0348 bga
3652 37T 2,820 ch30 321
3976 638 1,950 .0329 282
Logs 5733 1,%10 0653 161
4612 1,090 125
4636 7396 1,080 .08k3 123
1812 10 1,010 100k 115
4812 1.0130 1,230 .15k 1ho
1636 1.0120 1,740 21153 199
k612 1.0070 1,820 .11k8 207
4296 .9027 3,180 .1029 363
3976 .7823 5,590 .0892 637
3652 66h2 9,90 o757 1,130
.3326 5523 ,500 2,100
M, = 1.10
0.0990 0.0086 5,730,000 0.0009 618,000
1320 0268 763,000 .0029 ,900
1650 oh68 22k ,000 .0050 2,100
1980 .0707 85,000 .0076 9,160
2309 L0991 38, 300 .0107 u,cl)gg
N 2938 .1329 19,300 .0Lh3 2,
5 .17er 10,600 .0186 1,140
3292 .2200 6,260 0237
.3616 .2155 3,920 .029 ka3
3938 .3k17 2,610 .0 281
4246 k139 1,850 .oLL8 1
k52 .5193 1,350 -0560 L
1836 6268 1,100 L0676 19
5104 .8010 991 .086% 107
510k L9165 1,220 131
4836 ggzr 2,060 .0962 223
.u572 .8023 3,320 .08635 253
) 678 5,930 .0732
3938 .5766 10,koo .06z2 1,120
M, = 1.30
0.2541 0.045L 63,800 0.00%7 6,630
.2858 .0818 2k, 800 2,570
L3173 .1202 12,300 o125 1,280
.3488 .1636 6,990 .0170 T26
.3800 2132 h,280 .0222 kks
i .2707 2,800 - -0281 292
4518 3377 1,930 -0351 201
b721 L16s 1,hk20 0433 k7
5020 .5123 1,110 .0532 1s
5072 .3316 1,070 L0552 11
5416 .7582 836 .0788 92
5416 .89%1 1,080 .0928 12
5072 . 1. 2,310 .0809 2h1
.5020 L1592 2,550 .0789 265
2?21 ehs8 4,500 0671 18
Jag o skol 7,980 0361 829
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TABLE IV
PHASE VELOCITY, WAVE NUMBER, AND REYNOLDS NUMBER FOR REUTRAL

SUBSONIC DISTURBANCE (STABILITY LIMITS) FOR NONINSULATED SURFACES

c o R g R 6
¥, = 0.70; Ty = 0.70
0.0262 0.0339 82,400,000 0.0041 9,900,000
.0521 073k 5, 360 000 .0088 6Lk ,000
.OTT7 .1188 1,110,000 0143 133,000
.1030 .1708 371 000 .0205 kl 600
.1281 .2308 161 000 0277 19,300
.1529 .3030 | 83,hoo .036k 10,000
.1701 .3670 57,200 .okl 6,870
1726 3777 54,400 - Lohs5h 6,550
1726 1986 69,000 .0599 8,280
.1701 Lho77 73,900 .0598 8,870
L1529 Lh73e 121,000 .0568 1h,500
.1281 L1715 270,000 .0502 32,400
.1030 . 3460 , 711,000 .0416 85,400
L0777 .2620 2,500,000 .0315 300,000
.0521 L1713 1h 6oo 000 0206 1,750,000

My = 0.70; T; = 0.80

0.0237 0.0237 157,000,000 0.0028 18, 300,000
.ok72 .050k 9,910,000 .0059 1,150,000
.0705 .0804 1,970,000 L0094 230,000
.0937 .1138 ’633,000 .0133 73,700
.1168 .1509 263,000 .0176 30,600
L1397 .1923 129,000 .0224 15,000
.1625 -2382 70,900 .0278 8,260
.1851 .2908 h2 600 .0339 k,960
L2075 .3510 27,500 .0Lko9 3,200
.2268 237 18,800 .okol 2,190
.2h09 L4668 15,900 .O5hk 1,860
275 Jlgb2 14,500 .0578 1,690
.2h75 .6308 18,500 .0735 2, ’160
.2409 .6233 | 21,400 L0726 2, ,500
2208 .6056 27,200 .0706 3,170
.2075 .5609 uh ,900 0654 5,230
.1851 .5062 77,hoo .0590 9,010
1625 . 65 1h1,000 .0520 16,L00
.1397 .3827 280 00C .oklL6 32, > 600
.1168 .316k% 630 000 .0369 73,400
.0937 .2h48g 1 690,000 .0290 197,000
.0705 .1822 5,890,000 .0212 686,000

NATIONAL ADVISORY
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TABLE IV - Concluded
PHASE VELOCITY, WAVE NUMBER, AND REYNOLDS NUMBER FOR
NEUTRAL SUBSONIC DISTURBANCE (STABILITY LIMITS) FOR

NONINSULATED SURFACES - Concluded

c a ' R % Ry

My = 0.70; Tl = 0,90

0.0433 0.0368 17,100,000 0.00k2 1,930,000
.0863 .0815 1,040,000 .0092 118,000
.1291 .1353 2oo 7000 .0153 22,700
171k .1996 62, ,500 .0226 7.070
.2135 L2775 25 500 L0314 2,880
L2551 .3728 12, ’ 500 .0422 1,410
.2963 .u980 ¥ ,970 .0563_ 789
.3166 .581lL 5 520 .0658 62h
.3268 6347 k,990 .0718 565
.3268 JT8LT 6,500 .088k4 T35
.3166 L7701 7,920 .0871 895
.2963 .7307 11,600 .0827 1,310
.2551 .6275 25, .0710 2, ,850
.2135 .5133 . 60,300 L0581 6 820
L171h .3972 170 000 .0kkg 19,200
.1291 .2858 617,000 .0323 69,800
.0863 .1793 3,740,000 .0203 k23,000

MO = 0.70; Tl = 1.25

0.0346 0.0160 8,800,000 0.0016 8,090,000
~ 0692 .0346 4, 380 000 .0036 hso 000
.1040 .056k 770,000 .0058 79,000
.1389 .0819 217,000 .0084 22,200
.1738 .1120 78,900 .0115 8,100
.2088 L1b77 3h 000 .0152 3,490
.2439 .1899 16, ,500 .0195 .1,700
.2789 .203 8, ,830 .02hT 907
.3138 . 3002 5,070 .0308 520
3485 .3722 3,110 .0382 319

3831 .59k 2,020 .ok71 207
STk .5668 1,380 .0582 142
As512 - .7061 1,000 .0725 103
.L8hE .9067 T60 L0931 78
.5092 1.1800 6L3 1211 €6
.5190 1.4480 615 .1486 63
.5190 1.5880 640 .1630 66
.5092 1.7250 806 L1770 83
.18k6 1.5370 1,390 L1577 12
JAs12 1.2580 2, 7h0 .1201 281
LTk 1.0330 5,360 .106¢ 550

NATIONAL ADVISORY
COMMTTTEE FOR AERONAUTICS
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Figure l.~ Boundery-layer velocity profiles for insulated surface.
Since 6 is taken equal to unity, the temperature profile is

givenby T = T; - ['1‘1 -+ 32 IOQ)]w - I w22,
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(b} Nonipulated suxfase, Mo = 0,703 T, = 0,803
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Fig. 41 NACA TN No. 1360
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NACA TN No. 1860 Fig. 4]
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(k) Insulated surface. Note thaf o> ag # 0 as R-> = for insulated surface. (M, # 0.)
Figure 4.- Continued.
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() Noninsulated surface, M, =0.70. Note that s>a, # 0 as R>= when T, = 1.25.

Figure 4.- Concluded.
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Fig. 6a

NACA TN No. 1360
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Ko = 0.70.
ace temperature (deg abs.) to
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e 6.~ Dependence of minimum critical Reynolds number

on thermal conditions at soclld surface.
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Fig. 6b NACA TN No. 1380
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NACA TN No. 1360 Fig. 7
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Figure 7.- Stabilizing effect at supersonlc Mach numbers of
withdrawal of heat from fluid through solid surface. At
each value of l(o > 1, there is a critical value of '1‘1 = '!l !

such that for T, s 'l‘lor the laminar boundary-layer flow 16°T

stable at all values of the Reynolde immber. (Curves for
K, =0 and ¥, = 0.70 included for comparison.)
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Fig. 8 ' NACA TN No. 1360
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Fig. 9
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